Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvprodvw2 Structured version   Visualization version   GIF version

Theorem cbvprodvw2 36205
Description: Change bound variable and the set of integers in a product, using implicit substitution. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
cbvprodvw2.1 𝐴 = 𝐵
cbvprodvw2.2 (𝑗 = 𝑘𝐶 = 𝐷)
Assertion
Ref Expression
cbvprodvw2 𝑗𝐴 𝐶 = ∏𝑘𝐵 𝐷
Distinct variable groups:   𝑗,𝑘   𝐷,𝑗   𝐶,𝑘   𝐴,𝑘   𝐵,𝑗
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)   𝐶(𝑗)   𝐷(𝑘)

Proof of Theorem cbvprodvw2
Dummy variables 𝑥 𝑦 𝑚 𝑛 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvprodvw2.1 . . . . . . 7 𝐴 = 𝐵
21sseq1i 4037 . . . . . 6 (𝐴 ⊆ (ℤ𝑚) ↔ 𝐵 ⊆ (ℤ𝑚))
31eleq2i 2836 . . . . . . . . . . . . . 14 (𝑗𝐴𝑗𝐵)
4 eleq1w 2827 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑗𝐵𝑘𝐵))
53, 4bitrid 283 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐵))
6 cbvprodvw2.2 . . . . . . . . . . . . 13 (𝑗 = 𝑘𝐶 = 𝐷)
75, 6ifbieq1d 4572 . . . . . . . . . . . 12 (𝑗 = 𝑘 → if(𝑗𝐴, 𝐶, 1) = if(𝑘𝐵, 𝐷, 1))
87cbvmptv 5279 . . . . . . . . . . 11 (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))
9 seqeq3 14051 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1)) → seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))))
108, 9ax-mp 5 . . . . . . . . . 10 seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1)))
1110breq1i 5173 . . . . . . . . 9 (seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦)
1211anbi2i 622 . . . . . . . 8 ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦))
1312exbii 1846 . . . . . . 7 (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦))
1413rexbii 3100 . . . . . 6 (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦))
15 seqeq3 14051 . . . . . . . 8 ((𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1)) → seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))))
168, 15ax-mp 5 . . . . . . 7 seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1)))
1716breq1i 5173 . . . . . 6 (seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥)
182, 14, 173anbi123i 1155 . . . . 5 ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥) ↔ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥))
1918rexbii 3100 . . . 4 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥))
20 f1oeq3 6847 . . . . . . . 8 (𝐴 = 𝐵 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)–1-1-onto𝐵))
211, 20ax-mp 5 . . . . . . 7 (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)–1-1-onto𝐵)
226cbvcsbv 3933 . . . . . . . . . . 11 (𝑓𝑛) / 𝑗𝐶 = (𝑓𝑛) / 𝑘𝐷
2322mpteq2i 5271 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷)
24 seqeq3 14051 . . . . . . . . . 10 ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷) → seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶)) = seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷)))
2523, 24ax-mp 5 . . . . . . . . 9 seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶)) = seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))
2625fveq1i 6916 . . . . . . . 8 (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚)
2726eqeq2i 2753 . . . . . . 7 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))
2821, 27anbi12i 627 . . . . . 6 ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚)))
2928exbii 1846 . . . . 5 (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚)))
3029rexbii 3100 . . . 4 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚)))
3119, 30orbi12i 913 . . 3 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))))
3231iotabii 6553 . 2 (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))))
33 df-prod 15946 . 2 𝑗𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐶))‘𝑚))))
34 df-prod 15946 . 2 𝑘𝐵 𝐷 = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐵, 𝐷, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐵𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐷))‘𝑚))))
3532, 33, 343eqtr4i 2778 1 𝑗𝐴 𝐶 = ∏𝑘𝐵 𝐷
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  csb 3921  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  cio 6518  1-1-ontowf1o 6567  cfv 6568  (class class class)co 7443  0cc0 11178  1c1 11179   · cmul 11183  cn 12287  cz 12633  cuz 12897  ...cfz 13561  seqcseq 14046  cli 15524  cprod 15945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5701  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-pred 6327  df-iota 6520  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-ov 7446  df-oprab 7447  df-mpo 7448  df-frecs 8316  df-wrecs 8347  df-recs 8421  df-rdg 8460  df-seq 14047  df-prod 15946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator