| Step | Hyp | Ref
| Expression |
| 1 | | cbvprodvw2.1 |
. . . . . . 7
⊢ 𝐴 = 𝐵 |
| 2 | 1 | sseq1i 4011 |
. . . . . 6
⊢ (𝐴 ⊆
(ℤ≥‘𝑚) ↔ 𝐵 ⊆ (ℤ≥‘𝑚)) |
| 3 | 1 | eleq2i 2832 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ 𝐴 ↔ 𝑗 ∈ 𝐵) |
| 4 | | eleq1w 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐵 ↔ 𝑘 ∈ 𝐵)) |
| 5 | 3, 4 | bitrid 283 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐵)) |
| 6 | | cbvprodvw2.2 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → 𝐶 = 𝐷) |
| 7 | 5, 6 | ifbieq1d 4548 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → if(𝑗 ∈ 𝐴, 𝐶, 1) = if(𝑘 ∈ 𝐵, 𝐷, 1)) |
| 8 | 7 | cbvmptv 5253 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1)) |
| 9 | | seqeq3 14043 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1)) → seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1)))) |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . . . . 10
⊢ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) |
| 11 | 10 | breq1i 5148 |
. . . . . . . . 9
⊢ (seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦) |
| 12 | 11 | anbi2i 623 |
. . . . . . . 8
⊢ ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦)) |
| 13 | 12 | exbii 1848 |
. . . . . . 7
⊢
(∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦)) |
| 14 | 13 | rexbii 3093 |
. . . . . 6
⊢
(∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦)) |
| 15 | | seqeq3 14043 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1)) → seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1)))) |
| 16 | 8, 15 | ax-mp 5 |
. . . . . . 7
⊢ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) |
| 17 | 16 | breq1i 5148 |
. . . . . 6
⊢ (seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑥) |
| 18 | 2, 14, 17 | 3anbi123i 1156 |
. . . . 5
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ↔ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑥)) |
| 19 | 18 | rexbii 3093 |
. . . 4
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑥)) |
| 20 | | f1oeq3 6836 |
. . . . . . . 8
⊢ (𝐴 = 𝐵 → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑚)–1-1-onto→𝐵)) |
| 21 | 1, 20 | ax-mp 5 |
. . . . . . 7
⊢ (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑚)–1-1-onto→𝐵) |
| 22 | 6 | cbvcsbv 3910 |
. . . . . . . . . . 11
⊢
⦋(𝑓‘𝑛) / 𝑗⦌𝐶 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐷 |
| 23 | 22 | mpteq2i 5245 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑗⦌𝐶) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷) |
| 24 | | seqeq3 14043 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑗⦌𝐶) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷) → seq1( · , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑗⦌𝐶)) = seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))) |
| 25 | 23, 24 | ax-mp 5 |
. . . . . . . . 9
⊢ seq1(
· , (𝑛 ∈
ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶)) = seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷)) |
| 26 | 25 | fveq1i 6905 |
. . . . . . . 8
⊢ (seq1(
· , (𝑛 ∈
ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚) |
| 27 | 26 | eqeq2i 2749 |
. . . . . . 7
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚)) |
| 28 | 21, 27 | anbi12i 628 |
. . . . . 6
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚))) |
| 29 | 28 | exbii 1848 |
. . . . 5
⊢
(∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚))) |
| 30 | 29 | rexbii 3093 |
. . . 4
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚))) |
| 31 | 19, 30 | orbi12i 915 |
. . 3
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚)))) |
| 32 | 31 | iotabii 6544 |
. 2
⊢
(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚)))) |
| 33 | | df-prod 15936 |
. 2
⊢
∏𝑗 ∈
𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐶))‘𝑚)))) |
| 34 | | df-prod 15936 |
. 2
⊢
∏𝑘 ∈
𝐵 𝐷 = (℩𝑥(∃𝑚 ∈ ℤ (𝐵 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐵, 𝐷, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐵 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐷))‘𝑚)))) |
| 35 | 32, 33, 34 | 3eqtr4i 2774 |
1
⊢
∏𝑗 ∈
𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐷 |