![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31fv1s | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 25-Feb-2013.) |
Ref | Expression |
---|---|
cdleme31.o | ⊢ 𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊)))) |
cdleme31.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) |
Ref | Expression |
---|---|
cdleme31fv1s | ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = ⦋𝑋 / 𝑥⦌𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme31.o | . . 3 ⊢ 𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊)))) | |
2 | cdleme31.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) | |
3 | eqid 2825 | . . 3 ⊢ (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊)))) = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊)))) | |
4 | 1, 2, 3 | cdleme31fv1 36465 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊))))) |
5 | 1, 3 | cdleme31so 36453 | . . 3 ⊢ (𝑋 ∈ 𝐵 → ⦋𝑋 / 𝑥⦌𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊))))) |
6 | 5 | adantr 474 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → ⦋𝑋 / 𝑥⦌𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊))))) |
7 | 4, 6 | eqtr4d 2864 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = ⦋𝑋 / 𝑥⦌𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ∀wral 3117 ⦋csb 3757 ifcif 4308 class class class wbr 4875 ↦ cmpt 4954 ‘cfv 6127 ℩crio 6870 (class class class)co 6910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-iota 6090 df-fun 6129 df-fv 6135 df-riota 6871 df-ov 6913 |
This theorem is referenced by: cdlemefrs32fva1 36475 cdleme32fva1 36512 |
Copyright terms: Public domain | W3C validator |