Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31fv1s Structured version   Visualization version   GIF version

Theorem cdleme31fv1s 38312
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 25-Feb-2013.)
Hypotheses
Ref Expression
cdleme31.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme31.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdleme31fv1s ((𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋 / 𝑥𝑂)
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑃   𝑥,𝑄   𝑥,𝑊   𝑥,𝑠,𝑧,𝑋   𝑥,𝐴   𝐵,𝑠,𝑧   𝑥,   𝑥,   𝑥,𝑁
Allowed substitution hints:   𝐴(𝑧,𝑠)   𝑃(𝑧,𝑠)   𝑄(𝑧,𝑠)   𝐹(𝑥,𝑧,𝑠)   (𝑧,𝑠)   (𝑧,𝑠)   (𝑧,𝑠)   𝑁(𝑧,𝑠)   𝑂(𝑥,𝑧,𝑠)   𝑊(𝑧,𝑠)

Proof of Theorem cdleme31fv1s
StepHypRef Expression
1 cdleme31.o . . 3 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
2 cdleme31.f . . 3 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
3 eqid 2739 . . 3 (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊))))
41, 2, 3cdleme31fv1 38311 . 2 ((𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
51, 3cdleme31so 38299 . . 3 (𝑋𝐵𝑋 / 𝑥𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
65adantr 484 . 2 ((𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑋 / 𝑥𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑧 = (𝑁 (𝑋 𝑊)))))
74, 6eqtr4d 2782 1 ((𝑋𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋 / 𝑥𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2112  wne 2943  wral 3064  csb 3829  ifcif 4456   class class class wbr 5070  cmpt 5152  cfv 6415  crio 7208  (class class class)co 7252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5153  df-id 5479  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-iota 6373  df-fun 6417  df-fv 6423  df-riota 7209  df-ov 7255
This theorem is referenced by:  cdlemefrs32fva1  38321  cdleme32fva1  38358
  Copyright terms: Public domain W3C validator