| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemefrs32fva1 | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT. (Contributed by NM, 29-Mar-2013.) |
| Ref | Expression |
|---|---|
| cdlemefrs27.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemefrs27.l | ⊢ ≤ = (le‘𝐾) |
| cdlemefrs27.j | ⊢ ∨ = (join‘𝐾) |
| cdlemefrs27.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemefrs27.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemefrs27.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemefrs27.eq | ⊢ (𝑠 = 𝑅 → (𝜑 ↔ 𝜓)) |
| cdlemefrs27.nb | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ 𝜑))) → 𝑁 ∈ 𝐵) |
| cdlemefrs27.rnb | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → ⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐵) |
| cdleme29frs.o | ⊢ 𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊)))) |
| cdleme29frs.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) |
| Ref | Expression |
|---|---|
| cdlemefrs32fva1 | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → (𝐹‘𝑅) = ⦋𝑅 / 𝑠⦌𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2rl 1243 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → 𝑅 ∈ 𝐴) | |
| 2 | cdlemefrs27.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | cdlemefrs27.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39270 | . . . 4 ⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → 𝑅 ∈ 𝐵) |
| 6 | simp2l 1200 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → 𝑃 ≠ 𝑄) | |
| 7 | simp2rr 1244 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → ¬ 𝑅 ≤ 𝑊) | |
| 8 | cdleme29frs.o | . . . 4 ⊢ 𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊)))) | |
| 9 | cdleme29frs.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) | |
| 10 | 8, 9 | cdleme31fv1s 40374 | . . 3 ⊢ ((𝑅 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐹‘𝑅) = ⦋𝑅 / 𝑥⦌𝑂) |
| 11 | 5, 6, 7, 10 | syl12anc 836 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → (𝐹‘𝑅) = ⦋𝑅 / 𝑥⦌𝑂) |
| 12 | cdlemefrs27.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 13 | cdlemefrs27.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 14 | cdlemefrs27.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 15 | cdlemefrs27.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 16 | cdlemefrs27.eq | . . 3 ⊢ (𝑠 = 𝑅 → (𝜑 ↔ 𝜓)) | |
| 17 | cdlemefrs27.nb | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (¬ 𝑠 ≤ 𝑊 ∧ 𝜑))) → 𝑁 ∈ 𝐵) | |
| 18 | cdlemefrs27.rnb | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → ⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐵) | |
| 19 | 2, 12, 13, 14, 3, 15, 16, 17, 18, 8 | cdlemefrs32fva 40382 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → ⦋𝑅 / 𝑥⦌𝑂 = ⦋𝑅 / 𝑠⦌𝑁) |
| 20 | 11, 19 | eqtrd 2764 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝜓) → (𝐹‘𝑅) = ⦋𝑅 / 𝑠⦌𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⦋csb 3853 ifcif 4478 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 ℩crio 7309 (class class class)co 7353 Basecbs 17138 lecple 17186 joincjn 18235 meetcmee 18236 Atomscatm 39244 HLchlt 39331 LHypclh 39966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-p1 18348 df-lat 18356 df-clat 18423 df-oposet 39157 df-ol 39159 df-oml 39160 df-covers 39247 df-ats 39248 df-atl 39279 df-cvlat 39303 df-hlat 39332 df-lhyp 39970 |
| This theorem is referenced by: cdlemefr32fva1 40392 cdlemefs32fva1 40405 |
| Copyright terms: Public domain | W3C validator |