Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs32fva1 Structured version   Visualization version   GIF version

Theorem cdlemefrs32fva1 37643
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT. (Contributed by NM, 29-Mar-2013.)
Hypotheses
Ref Expression
cdlemefrs27.b 𝐵 = (Base‘𝐾)
cdlemefrs27.l = (le‘𝐾)
cdlemefrs27.j = (join‘𝐾)
cdlemefrs27.m = (meet‘𝐾)
cdlemefrs27.a 𝐴 = (Atoms‘𝐾)
cdlemefrs27.h 𝐻 = (LHyp‘𝐾)
cdlemefrs27.eq (𝑠 = 𝑅 → (𝜑𝜓))
cdlemefrs27.nb ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
cdlemefrs27.rnb ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅 / 𝑠𝑁𝐵)
cdleme29frs.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme29frs.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdlemefrs32fva1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (𝐹𝑅) = 𝑅 / 𝑠𝑁)
Distinct variable groups:   𝑧,𝑠,𝐴   𝐻,𝑠   ,𝑠   𝐾,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑊,𝑠   𝜓,𝑠   𝑧,𝐴   𝑧,𝐵   𝑧,𝐻   𝑧,𝐾   𝑧,   𝑧,𝑁   𝑧,𝑃   𝑧,𝑄   𝑧,𝑅   𝑧,𝑊   𝜓,𝑧   𝐵,𝑠   𝑧,   ,𝑠,𝑧   𝜑,𝑧   𝑥,𝑧,𝐴   𝑥,𝐵   𝑥,   𝑥,   𝑥,   𝑥,𝑁   𝑥,𝑠,𝑅   𝑥,𝑊   𝑥,𝑃   𝑥,𝑄
Allowed substitution hints:   𝜑(𝑥,𝑠)   𝜓(𝑥)   𝐹(𝑥,𝑧,𝑠)   𝐻(𝑥)   𝐾(𝑥)   𝑁(𝑠)   𝑂(𝑥,𝑧,𝑠)

Proof of Theorem cdlemefrs32fva1
StepHypRef Expression
1 simp2rl 1239 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅𝐴)
2 cdlemefrs27.b . . . . 5 𝐵 = (Base‘𝐾)
3 cdlemefrs27.a . . . . 5 𝐴 = (Atoms‘𝐾)
42, 3atbase 36531 . . . 4 (𝑅𝐴𝑅𝐵)
51, 4syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅𝐵)
6 simp2l 1196 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑃𝑄)
7 simp2rr 1240 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ¬ 𝑅 𝑊)
8 cdleme29frs.o . . . 4 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
9 cdleme29frs.f . . . 4 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
108, 9cdleme31fv1s 37634 . . 3 ((𝑅𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑅 𝑊)) → (𝐹𝑅) = 𝑅 / 𝑥𝑂)
115, 6, 7, 10syl12anc 835 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (𝐹𝑅) = 𝑅 / 𝑥𝑂)
12 cdlemefrs27.l . . 3 = (le‘𝐾)
13 cdlemefrs27.j . . 3 = (join‘𝐾)
14 cdlemefrs27.m . . 3 = (meet‘𝐾)
15 cdlemefrs27.h . . 3 𝐻 = (LHyp‘𝐾)
16 cdlemefrs27.eq . . 3 (𝑠 = 𝑅 → (𝜑𝜓))
17 cdlemefrs27.nb . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
18 cdlemefrs27.rnb . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅 / 𝑠𝑁𝐵)
192, 12, 13, 14, 3, 15, 16, 17, 18, 8cdlemefrs32fva 37642 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅 / 𝑥𝑂 = 𝑅 / 𝑠𝑁)
2011, 19eqtrd 2859 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (𝐹𝑅) = 𝑅 / 𝑠𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  csb 3867  ifcif 4451   class class class wbr 5053  cmpt 5133  cfv 6344  crio 7107  (class class class)co 7150  Basecbs 16486  lecple 16575  joincjn 17557  meetcmee 17558  Atomscatm 36505  HLchlt 36592  LHypclh 37226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-op 4558  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-proset 17541  df-poset 17559  df-plt 17571  df-lub 17587  df-glb 17588  df-join 17589  df-meet 17590  df-p0 17652  df-p1 17653  df-lat 17659  df-clat 17721  df-oposet 36418  df-ol 36420  df-oml 36421  df-covers 36508  df-ats 36509  df-atl 36540  df-cvlat 36564  df-hlat 36593  df-lhyp 37230
This theorem is referenced by:  cdlemefr32fva1  37652  cdlemefs32fva1  37665
  Copyright terms: Public domain W3C validator