![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31fv2 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 23-Feb-2013.) |
Ref | Expression |
---|---|
cdleme31fv2.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) |
Ref | Expression |
---|---|
cdleme31fv2 | ⊢ ((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme31fv2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥))) |
3 | breq1 4846 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) | |
4 | 3 | notbid 310 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (¬ 𝑥 ≤ 𝑊 ↔ ¬ 𝑋 ≤ 𝑊)) |
5 | 4 | anbi2d 623 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊) ↔ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊))) |
6 | 5 | notbid 310 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊) ↔ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊))) |
7 | 6 | biimparc 472 | . . . . 5 ⊢ ((¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑥 = 𝑋) → ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊)) |
8 | 7 | adantll 706 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊)) |
9 | 8 | iffalsed 4288 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥) = 𝑥) |
10 | simpr 478 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
11 | 9, 10 | eqtrd 2833 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥) = 𝑋) |
12 | simpl 475 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
13 | 2, 11, 12, 12 | fvmptd 6513 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ifcif 4277 class class class wbr 4843 ↦ cmpt 4922 ‘cfv 6101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-iota 6064 df-fun 6103 df-fv 6109 |
This theorem is referenced by: cdleme31id 36415 cdleme32fvcl 36461 cdleme32e 36466 cdleme32le 36468 cdleme48gfv 36558 cdleme50ldil 36569 |
Copyright terms: Public domain | W3C validator |