Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31fv2 Structured version   Visualization version   GIF version

Theorem cdleme31fv2 39921
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 23-Feb-2013.)
Hypothesis
Ref Expression
cdleme31fv2.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdleme31fv2 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑃   𝑥,𝑄   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐹(𝑥)   𝑂(𝑥)

Proof of Theorem cdleme31fv2
StepHypRef Expression
1 cdleme31fv2.f . 2 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
2 breq1 5146 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
32notbid 317 . . . . . . . 8 (𝑥 = 𝑋 → (¬ 𝑥 𝑊 ↔ ¬ 𝑋 𝑊))
43anbi2d 628 . . . . . . 7 (𝑥 = 𝑋 → ((𝑃𝑄 ∧ ¬ 𝑥 𝑊) ↔ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)))
54notbid 317 . . . . . 6 (𝑥 = 𝑋 → (¬ (𝑃𝑄 ∧ ¬ 𝑥 𝑊) ↔ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)))
65biimparc 478 . . . . 5 ((¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ 𝑥 = 𝑋) → ¬ (𝑃𝑄 ∧ ¬ 𝑥 𝑊))
76adantll 712 . . . 4 (((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑥 = 𝑋) → ¬ (𝑃𝑄 ∧ ¬ 𝑥 𝑊))
87iffalsed 4535 . . 3 (((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑥 = 𝑋) → if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥) = 𝑥)
9 simpr 483 . . 3 (((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋)
108, 9eqtrd 2765 . 2 (((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑥 = 𝑋) → if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥) = 𝑋)
11 simpl 481 . 2 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑋𝐵)
121, 10, 11, 11fvmptd2 7007 1 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2930  ifcif 4524   class class class wbr 5143  cmpt 5226  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550
This theorem is referenced by:  cdleme31id  39922  cdleme32fvcl  39968  cdleme32e  39973  cdleme32le  39975  cdleme48gfv  40065  cdleme50ldil  40076
  Copyright terms: Public domain W3C validator