Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31fv2 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 23-Feb-2013.) |
Ref | Expression |
---|---|
cdleme31fv2.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) |
Ref | Expression |
---|---|
cdleme31fv2 | ⊢ ((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme31fv2.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) | |
2 | breq1 5033 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) | |
3 | 2 | notbid 321 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (¬ 𝑥 ≤ 𝑊 ↔ ¬ 𝑋 ≤ 𝑊)) |
4 | 3 | anbi2d 632 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊) ↔ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊))) |
5 | 4 | notbid 321 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊) ↔ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊))) |
6 | 5 | biimparc 483 | . . . . 5 ⊢ ((¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑥 = 𝑋) → ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊)) |
7 | 6 | adantll 714 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊)) |
8 | 7 | iffalsed 4425 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥) = 𝑥) |
9 | simpr 488 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
10 | 8, 9 | eqtrd 2773 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥) = 𝑋) |
11 | simpl 486 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
12 | 1, 10, 11, 11 | fvmptd2 6785 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ifcif 4414 class class class wbr 5030 ↦ cmpt 5110 ‘cfv 6339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6297 df-fun 6341 df-fv 6347 |
This theorem is referenced by: cdleme31id 38053 cdleme32fvcl 38099 cdleme32e 38104 cdleme32le 38106 cdleme48gfv 38196 cdleme50ldil 38207 |
Copyright terms: Public domain | W3C validator |