![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31fv2 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 23-Feb-2013.) |
Ref | Expression |
---|---|
cdleme31fv2.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) |
Ref | Expression |
---|---|
cdleme31fv2 | ⊢ ((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme31fv2.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) | |
2 | breq1 5144 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) | |
3 | 2 | notbid 318 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (¬ 𝑥 ≤ 𝑊 ↔ ¬ 𝑋 ≤ 𝑊)) |
4 | 3 | anbi2d 628 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊) ↔ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊))) |
5 | 4 | notbid 318 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊) ↔ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊))) |
6 | 5 | biimparc 479 | . . . . 5 ⊢ ((¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑥 = 𝑋) → ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊)) |
7 | 6 | adantll 711 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊)) |
8 | 7 | iffalsed 4534 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥) = 𝑥) |
9 | simpr 484 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
10 | 8, 9 | eqtrd 2766 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥) = 𝑋) |
11 | simpl 482 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
12 | 1, 10, 11, 11 | fvmptd2 7000 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ifcif 4523 class class class wbr 5141 ↦ cmpt 5224 ‘cfv 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6489 df-fun 6539 df-fv 6545 |
This theorem is referenced by: cdleme31id 39778 cdleme32fvcl 39824 cdleme32e 39829 cdleme32le 39831 cdleme48gfv 39921 cdleme50ldil 39932 |
Copyright terms: Public domain | W3C validator |