| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31fv2 | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 23-Feb-2013.) |
| Ref | Expression |
|---|---|
| cdleme31fv2.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) |
| Ref | Expression |
|---|---|
| cdleme31fv2 | ⊢ ((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme31fv2.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) | |
| 2 | breq1 5146 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊)) | |
| 3 | 2 | notbid 318 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (¬ 𝑥 ≤ 𝑊 ↔ ¬ 𝑋 ≤ 𝑊)) |
| 4 | 3 | anbi2d 630 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊) ↔ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊))) |
| 5 | 4 | notbid 318 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊) ↔ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊))) |
| 6 | 5 | biimparc 479 | . . . . 5 ⊢ ((¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝑥 = 𝑋) → ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊)) |
| 7 | 6 | adantll 714 | . . . 4 ⊢ (((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊)) |
| 8 | 7 | iffalsed 4536 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥) = 𝑥) |
| 9 | simpr 484 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
| 10 | 8, 9 | eqtrd 2777 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ 𝑥 = 𝑋) → if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥) = 𝑋) |
| 11 | simpl 482 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
| 12 | 1, 10, 11, 11 | fvmptd2 7024 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ifcif 4525 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 |
| This theorem is referenced by: cdleme31id 40396 cdleme32fvcl 40442 cdleme32e 40447 cdleme32le 40449 cdleme48gfv 40539 cdleme50ldil 40550 |
| Copyright terms: Public domain | W3C validator |