Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31fv2 Structured version   Visualization version   GIF version

Theorem cdleme31fv2 40394
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 23-Feb-2013.)
Hypothesis
Ref Expression
cdleme31fv2.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdleme31fv2 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑃   𝑥,𝑄   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐹(𝑥)   𝑂(𝑥)

Proof of Theorem cdleme31fv2
StepHypRef Expression
1 cdleme31fv2.f . 2 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
2 breq1 5113 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
32notbid 318 . . . . . . . 8 (𝑥 = 𝑋 → (¬ 𝑥 𝑊 ↔ ¬ 𝑋 𝑊))
43anbi2d 630 . . . . . . 7 (𝑥 = 𝑋 → ((𝑃𝑄 ∧ ¬ 𝑥 𝑊) ↔ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)))
54notbid 318 . . . . . 6 (𝑥 = 𝑋 → (¬ (𝑃𝑄 ∧ ¬ 𝑥 𝑊) ↔ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)))
65biimparc 479 . . . . 5 ((¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ 𝑥 = 𝑋) → ¬ (𝑃𝑄 ∧ ¬ 𝑥 𝑊))
76adantll 714 . . . 4 (((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑥 = 𝑋) → ¬ (𝑃𝑄 ∧ ¬ 𝑥 𝑊))
87iffalsed 4502 . . 3 (((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑥 = 𝑋) → if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥) = 𝑥)
9 simpr 484 . . 3 (((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋)
108, 9eqtrd 2765 . 2 (((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑥 = 𝑋) → if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥) = 𝑋)
11 simpl 482 . 2 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑋𝐵)
121, 10, 11, 11fvmptd2 6979 1 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  ifcif 4491   class class class wbr 5110  cmpt 5191  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522
This theorem is referenced by:  cdleme31id  40395  cdleme32fvcl  40441  cdleme32e  40446  cdleme32le  40448  cdleme48gfv  40538  cdleme50ldil  40549
  Copyright terms: Public domain W3C validator