| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlkfv | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for clwwlkf1o 29987: the value of function 𝐹. (Contributed by Alexander van der Vekens, 28-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 1-Nov-2022.) |
| Ref | Expression |
|---|---|
| clwwlkf1o.d | ⊢ 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)} |
| clwwlkf1o.f | ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡 prefix 𝑁)) |
| Ref | Expression |
|---|---|
| clwwlkfv | ⊢ (𝑊 ∈ 𝐷 → (𝐹‘𝑊) = (𝑊 prefix 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7397 | . 2 ⊢ (𝑡 = 𝑊 → (𝑡 prefix 𝑁) = (𝑊 prefix 𝑁)) | |
| 2 | clwwlkf1o.f | . 2 ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡 prefix 𝑁)) | |
| 3 | ovex 7423 | . 2 ⊢ (𝑊 prefix 𝑁) ∈ V | |
| 4 | 1, 2, 3 | fvmpt 6971 | 1 ⊢ (𝑊 ∈ 𝐷 → (𝐹‘𝑊) = (𝑊 prefix 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 0cc0 11075 lastSclsw 14534 prefix cpfx 14642 WWalksN cwwlksn 29763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: clwwlkf1 29985 clwwlkfo 29986 |
| Copyright terms: Public domain | W3C validator |