MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkfv Structured version   Visualization version   GIF version

Theorem clwwlkfv 28131
Description: Lemma 2 for clwwlkf1o 28134: the value of function 𝐹. (Contributed by Alexander van der Vekens, 28-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwwlkf1o.d 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
clwwlkf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡 prefix 𝑁))
Assertion
Ref Expression
clwwlkfv (𝑊𝐷 → (𝐹𝑊) = (𝑊 prefix 𝑁))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑡,𝐷   𝑡,𝐺,𝑤   𝑡,𝑁   𝑡,𝑊
Allowed substitution hints:   𝐷(𝑤)   𝐹(𝑤,𝑡)   𝑊(𝑤)

Proof of Theorem clwwlkfv
StepHypRef Expression
1 oveq1 7220 . 2 (𝑡 = 𝑊 → (𝑡 prefix 𝑁) = (𝑊 prefix 𝑁))
2 clwwlkf1o.f . 2 𝐹 = (𝑡𝐷 ↦ (𝑡 prefix 𝑁))
3 ovex 7246 . 2 (𝑊 prefix 𝑁) ∈ V
41, 2, 3fvmpt 6818 1 (𝑊𝐷 → (𝐹𝑊) = (𝑊 prefix 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  {crab 3065  cmpt 5135  cfv 6380  (class class class)co 7213  0cc0 10729  lastSclsw 14117   prefix cpfx 14235   WWalksN cwwlksn 27910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388  df-ov 7216
This theorem is referenced by:  clwwlkf1  28132  clwwlkfo  28133
  Copyright terms: Public domain W3C validator