![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlkfv | Structured version Visualization version GIF version |
Description: Lemma 2 for clwwlkf1o 29571: the value of function πΉ. (Contributed by Alexander van der Vekens, 28-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 1-Nov-2022.) |
Ref | Expression |
---|---|
clwwlkf1o.d | β’ π· = {π€ β (π WWalksN πΊ) β£ (lastSβπ€) = (π€β0)} |
clwwlkf1o.f | β’ πΉ = (π‘ β π· β¦ (π‘ prefix π)) |
Ref | Expression |
---|---|
clwwlkfv | β’ (π β π· β (πΉβπ) = (π prefix π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7418 | . 2 β’ (π‘ = π β (π‘ prefix π) = (π prefix π)) | |
2 | clwwlkf1o.f | . 2 β’ πΉ = (π‘ β π· β¦ (π‘ prefix π)) | |
3 | ovex 7444 | . 2 β’ (π prefix π) β V | |
4 | 1, 2, 3 | fvmpt 6997 | 1 β’ (π β π· β (πΉβπ) = (π prefix π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 {crab 3430 β¦ cmpt 5230 βcfv 6542 (class class class)co 7411 0cc0 11112 lastSclsw 14516 prefix cpfx 14624 WWalksN cwwlksn 29347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 |
This theorem is referenced by: clwwlkf1 29569 clwwlkfo 29570 |
Copyright terms: Public domain | W3C validator |