![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlkfv | Structured version Visualization version GIF version |
Description: Lemma 2 for clwwlkf1o 30096: the value of function 𝐹. (Contributed by Alexander van der Vekens, 28-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 1-Nov-2022.) |
Ref | Expression |
---|---|
clwwlkf1o.d | ⊢ 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)} |
clwwlkf1o.f | ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡 prefix 𝑁)) |
Ref | Expression |
---|---|
clwwlkfv | ⊢ (𝑊 ∈ 𝐷 → (𝐹‘𝑊) = (𝑊 prefix 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7445 | . 2 ⊢ (𝑡 = 𝑊 → (𝑡 prefix 𝑁) = (𝑊 prefix 𝑁)) | |
2 | clwwlkf1o.f | . 2 ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡 prefix 𝑁)) | |
3 | ovex 7471 | . 2 ⊢ (𝑊 prefix 𝑁) ∈ V | |
4 | 1, 2, 3 | fvmpt 7023 | 1 ⊢ (𝑊 ∈ 𝐷 → (𝐹‘𝑊) = (𝑊 prefix 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3436 ↦ cmpt 5234 ‘cfv 6569 (class class class)co 7438 0cc0 11162 lastSclsw 14606 prefix cpfx 14714 WWalksN cwwlksn 29872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 |
This theorem is referenced by: clwwlkf1 30094 clwwlkfo 30095 |
Copyright terms: Public domain | W3C validator |