MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkfv Structured version   Visualization version   GIF version

Theorem clwwlkfv 30010
Description: Lemma 2 for clwwlkf1o 30013: the value of function 𝐹. (Contributed by Alexander van der Vekens, 28-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwwlkf1o.d 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
clwwlkf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡 prefix 𝑁))
Assertion
Ref Expression
clwwlkfv (𝑊𝐷 → (𝐹𝑊) = (𝑊 prefix 𝑁))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑡,𝐷   𝑡,𝐺,𝑤   𝑡,𝑁   𝑡,𝑊
Allowed substitution hints:   𝐷(𝑤)   𝐹(𝑤,𝑡)   𝑊(𝑤)

Proof of Theorem clwwlkfv
StepHypRef Expression
1 oveq1 7360 . 2 (𝑡 = 𝑊 → (𝑡 prefix 𝑁) = (𝑊 prefix 𝑁))
2 clwwlkf1o.f . 2 𝐹 = (𝑡𝐷 ↦ (𝑡 prefix 𝑁))
3 ovex 7386 . 2 (𝑊 prefix 𝑁) ∈ V
41, 2, 3fvmpt 6934 1 (𝑊𝐷 → (𝐹𝑊) = (𝑊 prefix 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3396  cmpt 5176  cfv 6486  (class class class)co 7353  0cc0 11028  lastSclsw 14487   prefix cpfx 14595   WWalksN cwwlksn 29789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356
This theorem is referenced by:  clwwlkf1  30011  clwwlkfo  30012
  Copyright terms: Public domain W3C validator