![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlkfv | Structured version Visualization version GIF version |
Description: Lemma 2 for clwwlkf1o 30085: the value of function 𝐹. (Contributed by Alexander van der Vekens, 28-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 1-Nov-2022.) |
Ref | Expression |
---|---|
clwwlkf1o.d | ⊢ 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)} |
clwwlkf1o.f | ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡 prefix 𝑁)) |
Ref | Expression |
---|---|
clwwlkfv | ⊢ (𝑊 ∈ 𝐷 → (𝐹‘𝑊) = (𝑊 prefix 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7457 | . 2 ⊢ (𝑡 = 𝑊 → (𝑡 prefix 𝑁) = (𝑊 prefix 𝑁)) | |
2 | clwwlkf1o.f | . 2 ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡 prefix 𝑁)) | |
3 | ovex 7483 | . 2 ⊢ (𝑊 prefix 𝑁) ∈ V | |
4 | 1, 2, 3 | fvmpt 7031 | 1 ⊢ (𝑊 ∈ 𝐷 → (𝐹‘𝑊) = (𝑊 prefix 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 ↦ cmpt 5249 ‘cfv 6575 (class class class)co 7450 0cc0 11186 lastSclsw 14612 prefix cpfx 14720 WWalksN cwwlksn 29861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6527 df-fun 6577 df-fv 6583 df-ov 7453 |
This theorem is referenced by: clwwlkf1 30083 clwwlkfo 30084 |
Copyright terms: Public domain | W3C validator |