MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkfv Structured version   Visualization version   GIF version

Theorem clwwlkfv 29568
Description: Lemma 2 for clwwlkf1o 29571: the value of function 𝐹. (Contributed by Alexander van der Vekens, 28-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwwlkf1o.d 𝐷 = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘€) = (π‘€β€˜0)}
clwwlkf1o.f 𝐹 = (𝑑 ∈ 𝐷 ↦ (𝑑 prefix 𝑁))
Assertion
Ref Expression
clwwlkfv (π‘Š ∈ 𝐷 β†’ (πΉβ€˜π‘Š) = (π‘Š prefix 𝑁))
Distinct variable groups:   𝑀,𝐺   𝑀,𝑁   𝑑,𝐷   𝑑,𝐺,𝑀   𝑑,𝑁   𝑑,π‘Š
Allowed substitution hints:   𝐷(𝑀)   𝐹(𝑀,𝑑)   π‘Š(𝑀)

Proof of Theorem clwwlkfv
StepHypRef Expression
1 oveq1 7418 . 2 (𝑑 = π‘Š β†’ (𝑑 prefix 𝑁) = (π‘Š prefix 𝑁))
2 clwwlkf1o.f . 2 𝐹 = (𝑑 ∈ 𝐷 ↦ (𝑑 prefix 𝑁))
3 ovex 7444 . 2 (π‘Š prefix 𝑁) ∈ V
41, 2, 3fvmpt 6997 1 (π‘Š ∈ 𝐷 β†’ (πΉβ€˜π‘Š) = (π‘Š prefix 𝑁))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1539   ∈ wcel 2104  {crab 3430   ↦ cmpt 5230  β€˜cfv 6542  (class class class)co 7411  0cc0 11112  lastSclsw 14516   prefix cpfx 14624   WWalksN cwwlksn 29347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414
This theorem is referenced by:  clwwlkf1  29569  clwwlkfo  29570
  Copyright terms: Public domain W3C validator