| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlkfv | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for clwwlkf1o 30013: the value of function 𝐹. (Contributed by Alexander van der Vekens, 28-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 1-Nov-2022.) |
| Ref | Expression |
|---|---|
| clwwlkf1o.d | ⊢ 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)} |
| clwwlkf1o.f | ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡 prefix 𝑁)) |
| Ref | Expression |
|---|---|
| clwwlkfv | ⊢ (𝑊 ∈ 𝐷 → (𝐹‘𝑊) = (𝑊 prefix 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7360 | . 2 ⊢ (𝑡 = 𝑊 → (𝑡 prefix 𝑁) = (𝑊 prefix 𝑁)) | |
| 2 | clwwlkf1o.f | . 2 ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡 prefix 𝑁)) | |
| 3 | ovex 7386 | . 2 ⊢ (𝑊 prefix 𝑁) ∈ V | |
| 4 | 1, 2, 3 | fvmpt 6934 | 1 ⊢ (𝑊 ∈ 𝐷 → (𝐹‘𝑊) = (𝑊 prefix 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3396 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 0cc0 11028 lastSclsw 14487 prefix cpfx 14595 WWalksN cwwlksn 29789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 |
| This theorem is referenced by: clwwlkf1 30011 clwwlkfo 30012 |
| Copyright terms: Public domain | W3C validator |