MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkf1o Structured version   Visualization version   GIF version

Theorem clwwlkf1o 29889
Description: F is a 1-1 onto function, that means that there is a bijection between the set of closed walks of a fixed length represented by walks (as words) and the set of closed walks (as words) of the fixed length. The difference between these two representations is that in the first case the starting vertex is repeated at the end of the word, and in the second case it is not. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwwlkf1o.d 𝐷 = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘€) = (π‘€β€˜0)}
clwwlkf1o.f 𝐹 = (𝑑 ∈ 𝐷 ↦ (𝑑 prefix 𝑁))
Assertion
Ref Expression
clwwlkf1o (𝑁 ∈ β„• β†’ 𝐹:𝐷–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝑀,𝐺   𝑀,𝑁   𝑑,𝐷   𝑑,𝐺,𝑀   𝑑,𝑁
Allowed substitution hints:   𝐷(𝑀)   𝐹(𝑀,𝑑)

Proof of Theorem clwwlkf1o
StepHypRef Expression
1 clwwlkf1o.d . . 3 𝐷 = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘€) = (π‘€β€˜0)}
2 clwwlkf1o.f . . 3 𝐹 = (𝑑 ∈ 𝐷 ↦ (𝑑 prefix 𝑁))
31, 2clwwlkf1 29887 . 2 (𝑁 ∈ β„• β†’ 𝐹:𝐷–1-1β†’(𝑁 ClWWalksN 𝐺))
41, 2clwwlkfo 29888 . 2 (𝑁 ∈ β„• β†’ 𝐹:𝐷–ontoβ†’(𝑁 ClWWalksN 𝐺))
5 df-f1o 6560 . 2 (𝐹:𝐷–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐷–1-1β†’(𝑁 ClWWalksN 𝐺) ∧ 𝐹:𝐷–ontoβ†’(𝑁 ClWWalksN 𝐺)))
63, 4, 5sylanbrc 581 1 (𝑁 ∈ β„• β†’ 𝐹:𝐷–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  {crab 3430   ↦ cmpt 5235  β€“1-1β†’wf1 6550  β€“ontoβ†’wfo 6551  β€“1-1-ontoβ†’wf1o 6552  β€˜cfv 6553  (class class class)co 7426  0cc0 11148  β„•cn 12252  lastSclsw 14554   prefix cpfx 14662   WWalksN cwwlksn 29665   ClWWalksN cclwwlkn 29862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-oadd 8499  df-er 8733  df-map 8855  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-card 9972  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12253  df-n0 12513  df-xnn0 12585  df-z 12599  df-uz 12863  df-rp 13017  df-fz 13527  df-fzo 13670  df-hash 14332  df-word 14507  df-lsw 14555  df-concat 14563  df-s1 14588  df-substr 14633  df-pfx 14663  df-wwlks 29669  df-wwlksn 29670  df-clwwlk 29820  df-clwwlkn 29863
This theorem is referenced by:  clwwlken  29890  clwwlkvbij  29951
  Copyright terms: Public domain W3C validator