Step | Hyp | Ref
| Expression |
1 | | clwwlkf1o.d |
. . 3
⊢ 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)} |
2 | | clwwlkf1o.f |
. . 3
⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡 prefix 𝑁)) |
3 | 1, 2 | clwwlkf 28312 |
. 2
⊢ (𝑁 ∈ ℕ → 𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺)) |
4 | | eqid 2738 |
. . . . . . . 8
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
5 | | eqid 2738 |
. . . . . . . 8
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
6 | 4, 5 | clwwlknp 28302 |
. . . . . . 7
⊢ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺))) |
7 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) |
8 | | simpl1 1189 |
. . . . . . . . . 10
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁)) |
9 | | 3simpc 1148 |
. . . . . . . . . . 11
⊢ (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺))) |
10 | 9 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺))) |
11 | 1 | clwwlkel 28311 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺))) → (𝑝 ++ 〈“(𝑝‘0)”〉) ∈ 𝐷) |
12 | 7, 8, 10, 11 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ++ 〈“(𝑝‘0)”〉) ∈ 𝐷) |
13 | | oveq2 7263 |
. . . . . . . . . . . . . 14
⊢ (𝑁 = (♯‘𝑝) → ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix 𝑁) = ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix
(♯‘𝑝))) |
14 | 13 | eqcoms 2746 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑝) =
𝑁 → ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix
𝑁) = ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix
(♯‘𝑝))) |
15 | 14 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) → ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix 𝑁) = ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix
(♯‘𝑝))) |
16 | 15 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix 𝑁) = ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix
(♯‘𝑝))) |
17 | 16 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix 𝑁) = ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix
(♯‘𝑝))) |
18 | | simpll 763 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ Word (Vtx‘𝐺)) |
19 | | fstwrdne0 14187 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ (𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁)) → (𝑝‘0) ∈ (Vtx‘𝐺)) |
20 | 19 | ancoms 458 |
. . . . . . . . . . . . . 14
⊢ (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑝‘0) ∈ (Vtx‘𝐺)) |
21 | 20 | s1cld 14236 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → 〈“(𝑝‘0)”〉 ∈
Word (Vtx‘𝐺)) |
22 | 18, 21 | jca 511 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑝‘0)”〉 ∈ Word
(Vtx‘𝐺))) |
23 | 22 | 3ad2antl1 1183 |
. . . . . . . . . . 11
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑝‘0)”〉 ∈ Word
(Vtx‘𝐺))) |
24 | | pfxccat1 14343 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑝‘0)”〉 ∈
Word (Vtx‘𝐺)) →
((𝑝 ++ 〈“(𝑝‘0)”〉) prefix
(♯‘𝑝)) = 𝑝) |
25 | 23, 24 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix
(♯‘𝑝)) = 𝑝) |
26 | 17, 25 | eqtr2d 2779 |
. . . . . . . . 9
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → 𝑝 = ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix 𝑁)) |
27 | 12, 26 | jca 511 |
. . . . . . . 8
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ 〈“(𝑝‘0)”〉) ∈ 𝐷 ∧ 𝑝 = ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix 𝑁))) |
28 | 27 | ex 412 |
. . . . . . 7
⊢ (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ ℕ → ((𝑝 ++ 〈“(𝑝‘0)”〉) ∈ 𝐷 ∧ 𝑝 = ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix 𝑁)))) |
29 | 6, 28 | syl 17 |
. . . . . 6
⊢ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ ℕ → ((𝑝 ++ 〈“(𝑝‘0)”〉) ∈ 𝐷 ∧ 𝑝 = ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix 𝑁)))) |
30 | 29 | impcom 407 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑝 ++ 〈“(𝑝‘0)”〉) ∈ 𝐷 ∧ 𝑝 = ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix 𝑁))) |
31 | | oveq1 7262 |
. . . . . 6
⊢ (𝑥 = (𝑝 ++ 〈“(𝑝‘0)”〉) → (𝑥 prefix 𝑁) = ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix 𝑁)) |
32 | 31 | rspceeqv 3567 |
. . . . 5
⊢ (((𝑝 ++ 〈“(𝑝‘0)”〉) ∈
𝐷 ∧ 𝑝 = ((𝑝 ++ 〈“(𝑝‘0)”〉) prefix 𝑁)) → ∃𝑥 ∈ 𝐷 𝑝 = (𝑥 prefix 𝑁)) |
33 | 30, 32 | syl 17 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥 ∈ 𝐷 𝑝 = (𝑥 prefix 𝑁)) |
34 | 1, 2 | clwwlkfv 28313 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → (𝐹‘𝑥) = (𝑥 prefix 𝑁)) |
35 | 34 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → (𝑝 = (𝐹‘𝑥) ↔ 𝑝 = (𝑥 prefix 𝑁))) |
36 | 35 | adantl 481 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) ∧ 𝑥 ∈ 𝐷) → (𝑝 = (𝐹‘𝑥) ↔ 𝑝 = (𝑥 prefix 𝑁))) |
37 | 36 | rexbidva 3224 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → (∃𝑥 ∈ 𝐷 𝑝 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐷 𝑝 = (𝑥 prefix 𝑁))) |
38 | 33, 37 | mpbird 256 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥 ∈ 𝐷 𝑝 = (𝐹‘𝑥)) |
39 | 38 | ralrimiva 3107 |
. 2
⊢ (𝑁 ∈ ℕ →
∀𝑝 ∈ (𝑁 ClWWalksN 𝐺)∃𝑥 ∈ 𝐷 𝑝 = (𝐹‘𝑥)) |
40 | | dffo3 6960 |
. 2
⊢ (𝐹:𝐷–onto→(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺) ∧ ∀𝑝 ∈ (𝑁 ClWWalksN 𝐺)∃𝑥 ∈ 𝐷 𝑝 = (𝐹‘𝑥))) |
41 | 3, 39, 40 | sylanbrc 582 |
1
⊢ (𝑁 ∈ ℕ → 𝐹:𝐷–onto→(𝑁 ClWWalksN 𝐺)) |