MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkfo Structured version   Visualization version   GIF version

Theorem clwwlkfo 30025
Description: Lemma 4 for clwwlkf1o 30026: F is an onto function. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwwlkf1o.d 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
clwwlkf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡 prefix 𝑁))
Assertion
Ref Expression
clwwlkfo (𝑁 ∈ ℕ → 𝐹:𝐷onto→(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑡,𝐷   𝑡,𝐺,𝑤   𝑡,𝑁
Allowed substitution hints:   𝐷(𝑤)   𝐹(𝑤,𝑡)

Proof of Theorem clwwlkfo
Dummy variables 𝑖 𝑥 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwwlkf1o.d . . 3 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
2 clwwlkf1o.f . . 3 𝐹 = (𝑡𝐷 ↦ (𝑡 prefix 𝑁))
31, 2clwwlkf 30022 . 2 (𝑁 ∈ ℕ → 𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺))
4 eqid 2731 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2731 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
64, 5clwwlknp 30012 . . . . . . 7 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)))
7 simpr 484 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
8 simpl1 1192 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁))
9 3simpc 1150 . . . . . . . . . . 11 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)))
109adantr 480 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)))
111clwwlkel 30021 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺))) → (𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷)
127, 8, 10, 11syl3anc 1373 . . . . . . . . 9 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷)
13 oveq2 7354 . . . . . . . . . . . . . 14 (𝑁 = (♯‘𝑝) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix (♯‘𝑝)))
1413eqcoms 2739 . . . . . . . . . . . . 13 ((♯‘𝑝) = 𝑁 → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix (♯‘𝑝)))
1514adantl 481 . . . . . . . . . . . 12 ((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix (♯‘𝑝)))
16153ad2ant1 1133 . . . . . . . . . . 11 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix (♯‘𝑝)))
1716adantr 480 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix (♯‘𝑝)))
18 simpll 766 . . . . . . . . . . . . 13 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ Word (Vtx‘𝐺))
19 fstwrdne0 14460 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁)) → (𝑝‘0) ∈ (Vtx‘𝐺))
2019ancoms 458 . . . . . . . . . . . . . 14 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑝‘0) ∈ (Vtx‘𝐺))
2120s1cld 14508 . . . . . . . . . . . . 13 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → ⟨“(𝑝‘0)”⟩ ∈ Word (Vtx‘𝐺))
2218, 21jca 511 . . . . . . . . . . . 12 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑝‘0)”⟩ ∈ Word (Vtx‘𝐺)))
23223ad2antl1 1186 . . . . . . . . . . 11 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑝‘0)”⟩ ∈ Word (Vtx‘𝐺)))
24 pfxccat1 14606 . . . . . . . . . . 11 ((𝑝 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑝‘0)”⟩ ∈ Word (Vtx‘𝐺)) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix (♯‘𝑝)) = 𝑝)
2523, 24syl 17 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix (♯‘𝑝)) = 𝑝)
2617, 25eqtr2d 2767 . . . . . . . . 9 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → 𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁))
2712, 26jca 511 . . . . . . . 8 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁)))
2827ex 412 . . . . . . 7 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ ℕ → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁))))
296, 28syl 17 . . . . . 6 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ ℕ → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁))))
3029impcom 407 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁)))
31 oveq1 7353 . . . . . 6 (𝑥 = (𝑝 ++ ⟨“(𝑝‘0)”⟩) → (𝑥 prefix 𝑁) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁))
3231rspceeqv 3600 . . . . 5 (((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁)) → ∃𝑥𝐷 𝑝 = (𝑥 prefix 𝑁))
3330, 32syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝐷 𝑝 = (𝑥 prefix 𝑁))
341, 2clwwlkfv 30023 . . . . . . 7 (𝑥𝐷 → (𝐹𝑥) = (𝑥 prefix 𝑁))
3534eqeq2d 2742 . . . . . 6 (𝑥𝐷 → (𝑝 = (𝐹𝑥) ↔ 𝑝 = (𝑥 prefix 𝑁)))
3635adantl 481 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) ∧ 𝑥𝐷) → (𝑝 = (𝐹𝑥) ↔ 𝑝 = (𝑥 prefix 𝑁)))
3736rexbidva 3154 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → (∃𝑥𝐷 𝑝 = (𝐹𝑥) ↔ ∃𝑥𝐷 𝑝 = (𝑥 prefix 𝑁)))
3833, 37mpbird 257 . . 3 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝐷 𝑝 = (𝐹𝑥))
3938ralrimiva 3124 . 2 (𝑁 ∈ ℕ → ∀𝑝 ∈ (𝑁 ClWWalksN 𝐺)∃𝑥𝐷 𝑝 = (𝐹𝑥))
40 dffo3 7035 . 2 (𝐹:𝐷onto→(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺) ∧ ∀𝑝 ∈ (𝑁 ClWWalksN 𝐺)∃𝑥𝐷 𝑝 = (𝐹𝑥)))
413, 39, 40sylanbrc 583 1 (𝑁 ∈ ℕ → 𝐹:𝐷onto→(𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  {cpr 4578  cmpt 5172  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  0cc0 11003  1c1 11004   + caddc 11006  cmin 11341  cn 12122  ..^cfzo 13551  chash 14234  Word cword 14417  lastSclsw 14466   ++ cconcat 14474  ⟨“cs1 14500   prefix cpfx 14575  Vtxcvtx 28972  Edgcedg 29023   WWalksN cwwlksn 29802   ClWWalksN cclwwlkn 29999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-lsw 14467  df-concat 14475  df-s1 14501  df-substr 14546  df-pfx 14576  df-wwlks 29806  df-wwlksn 29807  df-clwwlk 29957  df-clwwlkn 30000
This theorem is referenced by:  clwwlkf1o  30026
  Copyright terms: Public domain W3C validator