Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkfo Structured version   Visualization version   GIF version

Theorem clwwlkfo 27838
 Description: Lemma 4 for clwwlkf1o 27839: F is an onto function. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwwlkf1o.d 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
clwwlkf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡 prefix 𝑁))
Assertion
Ref Expression
clwwlkfo (𝑁 ∈ ℕ → 𝐹:𝐷onto→(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑡,𝐷   𝑡,𝐺,𝑤   𝑡,𝑁
Allowed substitution hints:   𝐷(𝑤)   𝐹(𝑤,𝑡)

Proof of Theorem clwwlkfo
Dummy variables 𝑖 𝑥 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwwlkf1o.d . . 3 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
2 clwwlkf1o.f . . 3 𝐹 = (𝑡𝐷 ↦ (𝑡 prefix 𝑁))
31, 2clwwlkf 27835 . 2 (𝑁 ∈ ℕ → 𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺))
4 eqid 2824 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2824 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
64, 5clwwlknp 27825 . . . . . . 7 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)))
7 simpr 488 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
8 simpl1 1188 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁))
9 3simpc 1147 . . . . . . . . . . 11 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)))
109adantr 484 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)))
111clwwlkel 27834 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺))) → (𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷)
127, 8, 10, 11syl3anc 1368 . . . . . . . . 9 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷)
13 oveq2 7157 . . . . . . . . . . . . . 14 (𝑁 = (♯‘𝑝) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix (♯‘𝑝)))
1413eqcoms 2832 . . . . . . . . . . . . 13 ((♯‘𝑝) = 𝑁 → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix (♯‘𝑝)))
1514adantl 485 . . . . . . . . . . . 12 ((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix (♯‘𝑝)))
16153ad2ant1 1130 . . . . . . . . . . 11 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix (♯‘𝑝)))
1716adantr 484 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix (♯‘𝑝)))
18 simpll 766 . . . . . . . . . . . . 13 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ Word (Vtx‘𝐺))
19 fstwrdne0 13908 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁)) → (𝑝‘0) ∈ (Vtx‘𝐺))
2019ancoms 462 . . . . . . . . . . . . . 14 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑝‘0) ∈ (Vtx‘𝐺))
2120s1cld 13957 . . . . . . . . . . . . 13 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → ⟨“(𝑝‘0)”⟩ ∈ Word (Vtx‘𝐺))
2218, 21jca 515 . . . . . . . . . . . 12 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑝‘0)”⟩ ∈ Word (Vtx‘𝐺)))
23223ad2antl1 1182 . . . . . . . . . . 11 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑝‘0)”⟩ ∈ Word (Vtx‘𝐺)))
24 pfxccat1 14064 . . . . . . . . . . 11 ((𝑝 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑝‘0)”⟩ ∈ Word (Vtx‘𝐺)) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix (♯‘𝑝)) = 𝑝)
2523, 24syl 17 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix (♯‘𝑝)) = 𝑝)
2617, 25eqtr2d 2860 . . . . . . . . 9 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → 𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁))
2712, 26jca 515 . . . . . . . 8 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁)))
2827ex 416 . . . . . . 7 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ ℕ → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁))))
296, 28syl 17 . . . . . 6 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ ℕ → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁))))
3029impcom 411 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁)))
31 oveq1 7156 . . . . . 6 (𝑥 = (𝑝 ++ ⟨“(𝑝‘0)”⟩) → (𝑥 prefix 𝑁) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁))
3231rspceeqv 3624 . . . . 5 (((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) prefix 𝑁)) → ∃𝑥𝐷 𝑝 = (𝑥 prefix 𝑁))
3330, 32syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝐷 𝑝 = (𝑥 prefix 𝑁))
341, 2clwwlkfv 27836 . . . . . . 7 (𝑥𝐷 → (𝐹𝑥) = (𝑥 prefix 𝑁))
3534eqeq2d 2835 . . . . . 6 (𝑥𝐷 → (𝑝 = (𝐹𝑥) ↔ 𝑝 = (𝑥 prefix 𝑁)))
3635adantl 485 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) ∧ 𝑥𝐷) → (𝑝 = (𝐹𝑥) ↔ 𝑝 = (𝑥 prefix 𝑁)))
3736rexbidva 3288 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → (∃𝑥𝐷 𝑝 = (𝐹𝑥) ↔ ∃𝑥𝐷 𝑝 = (𝑥 prefix 𝑁)))
3833, 37mpbird 260 . . 3 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝐷 𝑝 = (𝐹𝑥))
3938ralrimiva 3177 . 2 (𝑁 ∈ ℕ → ∀𝑝 ∈ (𝑁 ClWWalksN 𝐺)∃𝑥𝐷 𝑝 = (𝐹𝑥))
40 dffo3 6859 . 2 (𝐹:𝐷onto→(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺) ∧ ∀𝑝 ∈ (𝑁 ClWWalksN 𝐺)∃𝑥𝐷 𝑝 = (𝐹𝑥)))
413, 39, 40sylanbrc 586 1 (𝑁 ∈ ℕ → 𝐹:𝐷onto→(𝑁 ClWWalksN 𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ∀wral 3133  ∃wrex 3134  {crab 3137  {cpr 4552   ↦ cmpt 5132  ⟶wf 6339  –onto→wfo 6341  ‘cfv 6343  (class class class)co 7149  0cc0 10535  1c1 10536   + caddc 10538   − cmin 10868  ℕcn 11634  ..^cfzo 13037  ♯chash 13695  Word cword 13866  lastSclsw 13914   ++ cconcat 13922  ⟨“cs1 13949   prefix cpfx 14032  Vtxcvtx 26792  Edgcedg 26843   WWalksN cwwlksn 27615   ClWWalksN cclwwlkn 27812 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-n0 11895  df-xnn0 11965  df-z 11979  df-uz 12241  df-rp 12387  df-fz 12895  df-fzo 13038  df-hash 13696  df-word 13867  df-lsw 13915  df-concat 13923  df-s1 13950  df-substr 14003  df-pfx 14033  df-wwlks 27619  df-wwlksn 27620  df-clwwlk 27770  df-clwwlkn 27813 This theorem is referenced by:  clwwlkf1o  27839
 Copyright terms: Public domain W3C validator