HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem1 Structured version   Visualization version   GIF version

Theorem cnlnadjlem1 31315
Description: Lemma for cnlnadji 31324 (Theorem 3.10 of [Beran] p. 104: every continuous linear operator has an adjoint). The value of the auxiliary functional ๐บ. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 ๐‘‡ โˆˆ LinOp
cnlnadjlem.2 ๐‘‡ โˆˆ ContOp
cnlnadjlem.3 ๐บ = (๐‘” โˆˆ โ„‹ โ†ฆ ((๐‘‡โ€˜๐‘”) ยทih ๐‘ฆ))
Assertion
Ref Expression
cnlnadjlem1 (๐ด โˆˆ โ„‹ โ†’ (๐บโ€˜๐ด) = ((๐‘‡โ€˜๐ด) ยทih ๐‘ฆ))
Distinct variable groups:   ๐‘ฆ,๐‘”,๐ด   ๐‘‡,๐‘”,๐‘ฆ
Allowed substitution hints:   ๐บ(๐‘ฆ,๐‘”)

Proof of Theorem cnlnadjlem1
StepHypRef Expression
1 fveq2 6891 . . 3 (๐‘” = ๐ด โ†’ (๐‘‡โ€˜๐‘”) = (๐‘‡โ€˜๐ด))
21oveq1d 7423 . 2 (๐‘” = ๐ด โ†’ ((๐‘‡โ€˜๐‘”) ยทih ๐‘ฆ) = ((๐‘‡โ€˜๐ด) ยทih ๐‘ฆ))
3 cnlnadjlem.3 . 2 ๐บ = (๐‘” โˆˆ โ„‹ โ†ฆ ((๐‘‡โ€˜๐‘”) ยทih ๐‘ฆ))
4 ovex 7441 . 2 ((๐‘‡โ€˜๐ด) ยทih ๐‘ฆ) โˆˆ V
52, 3, 4fvmpt 6998 1 (๐ด โˆˆ โ„‹ โ†’ (๐บโ€˜๐ด) = ((๐‘‡โ€˜๐ด) ยทih ๐‘ฆ))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1541   โˆˆ wcel 2106   โ†ฆ cmpt 5231  โ€˜cfv 6543  (class class class)co 7408   โ„‹chba 30167   ยทih csp 30170  ContOpccop 30194  LinOpclo 30195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411
This theorem is referenced by:  cnlnadjlem2  31316  cnlnadjlem3  31317  cnlnadjlem5  31319
  Copyright terms: Public domain W3C validator