HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem1 Structured version   Visualization version   GIF version

Theorem cnlnadjlem1 32112
Description: Lemma for cnlnadji 32121 (Theorem 3.10 of [Beran] p. 104: every continuous linear operator has an adjoint). The value of the auxiliary functional 𝐺. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
Assertion
Ref Expression
cnlnadjlem1 (𝐴 ∈ ℋ → (𝐺𝐴) = ((𝑇𝐴) ·ih 𝑦))
Distinct variable groups:   𝑦,𝑔,𝐴   𝑇,𝑔,𝑦
Allowed substitution hints:   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem1
StepHypRef Expression
1 fveq2 6914 . . 3 (𝑔 = 𝐴 → (𝑇𝑔) = (𝑇𝐴))
21oveq1d 7453 . 2 (𝑔 = 𝐴 → ((𝑇𝑔) ·ih 𝑦) = ((𝑇𝐴) ·ih 𝑦))
3 cnlnadjlem.3 . 2 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
4 ovex 7471 . 2 ((𝑇𝐴) ·ih 𝑦) ∈ V
52, 3, 4fvmpt 7023 1 (𝐴 ∈ ℋ → (𝐺𝐴) = ((𝑇𝐴) ·ih 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cmpt 5234  cfv 6569  (class class class)co 7438  chba 30964   ·ih csp 30967  ContOpccop 30991  LinOpclo 30992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441
This theorem is referenced by:  cnlnadjlem2  32113  cnlnadjlem3  32114  cnlnadjlem5  32116
  Copyright terms: Public domain W3C validator