| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cnlnadjlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for cnlnadji 32055 (Theorem 3.10 of [Beran] p. 104: every continuous linear operator has an adjoint). The value of the auxiliary functional 𝐺. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp |
| cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp |
| cnlnadjlem.3 | ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) |
| Ref | Expression |
|---|---|
| cnlnadjlem1 | ⊢ (𝐴 ∈ ℋ → (𝐺‘𝐴) = ((𝑇‘𝐴) ·ih 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6840 | . . 3 ⊢ (𝑔 = 𝐴 → (𝑇‘𝑔) = (𝑇‘𝐴)) | |
| 2 | 1 | oveq1d 7384 | . 2 ⊢ (𝑔 = 𝐴 → ((𝑇‘𝑔) ·ih 𝑦) = ((𝑇‘𝐴) ·ih 𝑦)) |
| 3 | cnlnadjlem.3 | . 2 ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) | |
| 4 | ovex 7402 | . 2 ⊢ ((𝑇‘𝐴) ·ih 𝑦) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6950 | 1 ⊢ (𝐴 ∈ ℋ → (𝐺‘𝐴) = ((𝑇‘𝐴) ·ih 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ℋchba 30898 ·ih csp 30901 ContOpccop 30925 LinOpclo 30926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: cnlnadjlem2 32047 cnlnadjlem3 32048 cnlnadjlem5 32050 |
| Copyright terms: Public domain | W3C validator |