HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem1 Structured version   Visualization version   GIF version

Theorem cnlnadjlem1 32003
Description: Lemma for cnlnadji 32012 (Theorem 3.10 of [Beran] p. 104: every continuous linear operator has an adjoint). The value of the auxiliary functional 𝐺. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
Assertion
Ref Expression
cnlnadjlem1 (𝐴 ∈ ℋ → (𝐺𝐴) = ((𝑇𝐴) ·ih 𝑦))
Distinct variable groups:   𝑦,𝑔,𝐴   𝑇,𝑔,𝑦
Allowed substitution hints:   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem1
StepHypRef Expression
1 fveq2 6865 . . 3 (𝑔 = 𝐴 → (𝑇𝑔) = (𝑇𝐴))
21oveq1d 7409 . 2 (𝑔 = 𝐴 → ((𝑇𝑔) ·ih 𝑦) = ((𝑇𝐴) ·ih 𝑦))
3 cnlnadjlem.3 . 2 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
4 ovex 7427 . 2 ((𝑇𝐴) ·ih 𝑦) ∈ V
52, 3, 4fvmpt 6975 1 (𝐴 ∈ ℋ → (𝐺𝐴) = ((𝑇𝐴) ·ih 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5196  cfv 6519  (class class class)co 7394  chba 30855   ·ih csp 30858  ContOpccop 30882  LinOpclo 30883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-iota 6472  df-fun 6521  df-fv 6527  df-ov 7397
This theorem is referenced by:  cnlnadjlem2  32004  cnlnadjlem3  32005  cnlnadjlem5  32007
  Copyright terms: Public domain W3C validator