Proof of Theorem suppun
Step | Hyp | Ref
| Expression |
1 | | ssun1 4086 |
. . . . . 6
⊢ (◡𝐹 “ (V ∖ {𝑍})) ⊆ ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐺 “ (V ∖ {𝑍}))) |
2 | | cnvun 6006 |
. . . . . . . 8
⊢ ◡(𝐹 ∪ 𝐺) = (◡𝐹 ∪ ◡𝐺) |
3 | 2 | imaeq1i 5926 |
. . . . . . 7
⊢ (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍})) = ((◡𝐹 ∪ ◡𝐺) “ (V ∖ {𝑍})) |
4 | | imaundir 6014 |
. . . . . . 7
⊢ ((◡𝐹 ∪ ◡𝐺) “ (V ∖ {𝑍})) = ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐺 “ (V ∖ {𝑍}))) |
5 | 3, 4 | eqtri 2765 |
. . . . . 6
⊢ (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍})) = ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐺 “ (V ∖ {𝑍}))) |
6 | 1, 5 | sseqtrri 3938 |
. . . . 5
⊢ (◡𝐹 “ (V ∖ {𝑍})) ⊆ (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍})) |
7 | 6 | a1i 11 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (◡𝐹 “ (V ∖ {𝑍})) ⊆ (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍}))) |
8 | | suppimacnv 7916 |
. . . . 5
⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
9 | 8 | adantr 484 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
10 | | suppun.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
11 | | unexg 7534 |
. . . . . . 7
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ 𝑉) → (𝐹 ∪ 𝐺) ∈ V) |
12 | 11 | adantlr 715 |
. . . . . 6
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝐺 ∈ 𝑉) → (𝐹 ∪ 𝐺) ∈ V) |
13 | 10, 12 | sylan2 596 |
. . . . 5
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 ∪ 𝐺) ∈ V) |
14 | | simplr 769 |
. . . . 5
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V) |
15 | | suppimacnv 7916 |
. . . . 5
⊢ (((𝐹 ∪ 𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹 ∪ 𝐺) supp 𝑍) = (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍}))) |
16 | 13, 14, 15 | syl2anc 587 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹 ∪ 𝐺) supp 𝑍) = (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍}))) |
17 | 7, 9, 16 | 3sstr4d 3948 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ⊆ ((𝐹 ∪ 𝐺) supp 𝑍)) |
18 | 17 | ex 416 |
. 2
⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹 ∪ 𝐺) supp 𝑍))) |
19 | | supp0prc 7906 |
. . . 4
⊢ (¬
(𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) |
20 | | 0ss 4311 |
. . . 4
⊢ ∅
⊆ ((𝐹 ∪ 𝐺) supp 𝑍) |
21 | 19, 20 | eqsstrdi 3955 |
. . 3
⊢ (¬
(𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ ((𝐹 ∪ 𝐺) supp 𝑍)) |
22 | 21 | a1d 25 |
. 2
⊢ (¬
(𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹 ∪ 𝐺) supp 𝑍))) |
23 | 18, 22 | pm2.61i 185 |
1
⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹 ∪ 𝐺) supp 𝑍)) |