MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppun Structured version   Visualization version   GIF version

Theorem suppun 8000
Description: The support of a class/function is a subset of the support of the union of this class/function with another class/function. (Contributed by AV, 4-Jun-2019.)
Hypothesis
Ref Expression
suppun.g (𝜑𝐺𝑉)
Assertion
Ref Expression
suppun (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹𝐺) supp 𝑍))

Proof of Theorem suppun
StepHypRef Expression
1 ssun1 4106 . . . . . 6 (𝐹 “ (V ∖ {𝑍})) ⊆ ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
2 cnvun 6046 . . . . . . . 8 (𝐹𝐺) = (𝐹𝐺)
32imaeq1i 5966 . . . . . . 7 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹𝐺) “ (V ∖ {𝑍}))
4 imaundir 6054 . . . . . . 7 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
53, 4eqtri 2766 . . . . . 6 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
61, 5sseqtrri 3958 . . . . 5 (𝐹 “ (V ∖ {𝑍})) ⊆ ((𝐹𝐺) “ (V ∖ {𝑍}))
76a1i 11 . . . 4 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 “ (V ∖ {𝑍})) ⊆ ((𝐹𝐺) “ (V ∖ {𝑍})))
8 suppimacnv 7990 . . . . 5 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
98adantr 481 . . . 4 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
10 suppun.g . . . . . 6 (𝜑𝐺𝑉)
11 unexg 7599 . . . . . . 7 ((𝐹 ∈ V ∧ 𝐺𝑉) → (𝐹𝐺) ∈ V)
1211adantlr 712 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝐺𝑉) → (𝐹𝐺) ∈ V)
1310, 12sylan2 593 . . . . 5 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹𝐺) ∈ V)
14 simplr 766 . . . . 5 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V)
15 suppimacnv 7990 . . . . 5 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
1613, 14, 15syl2anc 584 . . . 4 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
177, 9, 163sstr4d 3968 . . 3 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ⊆ ((𝐹𝐺) supp 𝑍))
1817ex 413 . 2 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹𝐺) supp 𝑍)))
19 supp0prc 7980 . . . 4 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅)
20 0ss 4330 . . . 4 ∅ ⊆ ((𝐹𝐺) supp 𝑍)
2119, 20eqsstrdi 3975 . . 3 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ ((𝐹𝐺) supp 𝑍))
2221a1d 25 . 2 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹𝐺) supp 𝑍)))
2318, 22pm2.61i 182 1 (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹𝐺) supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  cun 3885  wss 3887  c0 4256  {csn 4561  ccnv 5588  cima 5592  (class class class)co 7275   supp csupp 7977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-supp 7978
This theorem is referenced by:  fsuppunbi  9149  gsumzaddlem  19522
  Copyright terms: Public domain W3C validator