Proof of Theorem suppun
Step | Hyp | Ref
| Expression |
1 | | ssun1 4106 |
. . . . . 6
⊢ (◡𝐹 “ (V ∖ {𝑍})) ⊆ ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐺 “ (V ∖ {𝑍}))) |
2 | | cnvun 6046 |
. . . . . . . 8
⊢ ◡(𝐹 ∪ 𝐺) = (◡𝐹 ∪ ◡𝐺) |
3 | 2 | imaeq1i 5966 |
. . . . . . 7
⊢ (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍})) = ((◡𝐹 ∪ ◡𝐺) “ (V ∖ {𝑍})) |
4 | | imaundir 6054 |
. . . . . . 7
⊢ ((◡𝐹 ∪ ◡𝐺) “ (V ∖ {𝑍})) = ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐺 “ (V ∖ {𝑍}))) |
5 | 3, 4 | eqtri 2766 |
. . . . . 6
⊢ (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍})) = ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐺 “ (V ∖ {𝑍}))) |
6 | 1, 5 | sseqtrri 3958 |
. . . . 5
⊢ (◡𝐹 “ (V ∖ {𝑍})) ⊆ (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍})) |
7 | 6 | a1i 11 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (◡𝐹 “ (V ∖ {𝑍})) ⊆ (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍}))) |
8 | | suppimacnv 7990 |
. . . . 5
⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
9 | 8 | adantr 481 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
10 | | suppun.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
11 | | unexg 7599 |
. . . . . . 7
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ 𝑉) → (𝐹 ∪ 𝐺) ∈ V) |
12 | 11 | adantlr 712 |
. . . . . 6
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝐺 ∈ 𝑉) → (𝐹 ∪ 𝐺) ∈ V) |
13 | 10, 12 | sylan2 593 |
. . . . 5
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 ∪ 𝐺) ∈ V) |
14 | | simplr 766 |
. . . . 5
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V) |
15 | | suppimacnv 7990 |
. . . . 5
⊢ (((𝐹 ∪ 𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹 ∪ 𝐺) supp 𝑍) = (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍}))) |
16 | 13, 14, 15 | syl2anc 584 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹 ∪ 𝐺) supp 𝑍) = (◡(𝐹 ∪ 𝐺) “ (V ∖ {𝑍}))) |
17 | 7, 9, 16 | 3sstr4d 3968 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ⊆ ((𝐹 ∪ 𝐺) supp 𝑍)) |
18 | 17 | ex 413 |
. 2
⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹 ∪ 𝐺) supp 𝑍))) |
19 | | supp0prc 7980 |
. . . 4
⊢ (¬
(𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) |
20 | | 0ss 4330 |
. . . 4
⊢ ∅
⊆ ((𝐹 ∪ 𝐺) supp 𝑍) |
21 | 19, 20 | eqsstrdi 3975 |
. . 3
⊢ (¬
(𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ ((𝐹 ∪ 𝐺) supp 𝑍)) |
22 | 21 | a1d 25 |
. 2
⊢ (¬
(𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹 ∪ 𝐺) supp 𝑍))) |
23 | 18, 22 | pm2.61i 182 |
1
⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹 ∪ 𝐺) supp 𝑍)) |