MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppun Structured version   Visualization version   GIF version

Theorem suppun 8225
Description: The support of a class/function is a subset of the support of the union of this class/function with another class/function. (Contributed by AV, 4-Jun-2019.)
Hypothesis
Ref Expression
suppun.g (𝜑𝐺𝑉)
Assertion
Ref Expression
suppun (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹𝐺) supp 𝑍))

Proof of Theorem suppun
StepHypRef Expression
1 ssun1 4201 . . . . . 6 (𝐹 “ (V ∖ {𝑍})) ⊆ ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
2 cnvun 6174 . . . . . . . 8 (𝐹𝐺) = (𝐹𝐺)
32imaeq1i 6086 . . . . . . 7 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹𝐺) “ (V ∖ {𝑍}))
4 imaundir 6182 . . . . . . 7 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
53, 4eqtri 2768 . . . . . 6 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐹 “ (V ∖ {𝑍})) ∪ (𝐺 “ (V ∖ {𝑍})))
61, 5sseqtrri 4046 . . . . 5 (𝐹 “ (V ∖ {𝑍})) ⊆ ((𝐹𝐺) “ (V ∖ {𝑍}))
76a1i 11 . . . 4 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 “ (V ∖ {𝑍})) ⊆ ((𝐹𝐺) “ (V ∖ {𝑍})))
8 suppimacnv 8215 . . . . 5 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
98adantr 480 . . . 4 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
10 suppun.g . . . . . 6 (𝜑𝐺𝑉)
11 unexg 7778 . . . . . . 7 ((𝐹 ∈ V ∧ 𝐺𝑉) → (𝐹𝐺) ∈ V)
1211adantlr 714 . . . . . 6 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝐺𝑉) → (𝐹𝐺) ∈ V)
1310, 12sylan2 592 . . . . 5 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹𝐺) ∈ V)
14 simplr 768 . . . . 5 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V)
15 suppimacnv 8215 . . . . 5 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
1613, 14, 15syl2anc 583 . . . 4 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
177, 9, 163sstr4d 4056 . . 3 (((𝐹 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → (𝐹 supp 𝑍) ⊆ ((𝐹𝐺) supp 𝑍))
1817ex 412 . 2 ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹𝐺) supp 𝑍)))
19 supp0prc 8204 . . . 4 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅)
20 0ss 4423 . . . 4 ∅ ⊆ ((𝐹𝐺) supp 𝑍)
2119, 20eqsstrdi 4063 . . 3 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ ((𝐹𝐺) supp 𝑍))
2221a1d 25 . 2 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹𝐺) supp 𝑍)))
2318, 22pm2.61i 182 1 (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐹𝐺) supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  cun 3974  wss 3976  c0 4352  {csn 4648  ccnv 5699  cima 5703  (class class class)co 7448   supp csupp 8201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-supp 8202
This theorem is referenced by:  fsuppunbi  9458  gsumzaddlem  19963
  Copyright terms: Public domain W3C validator