| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfres2 | Structured version Visualization version GIF version | ||
| Description: Measurability of a piecewise function: if 𝐹 is measurable on subsets 𝐵 and 𝐶 of its domain, and these pieces make up all of 𝐴, then 𝐹 is measurable on the whole domain. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbfres2.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| mbfres2.2 | ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) |
| mbfres2.3 | ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) |
| mbfres2.4 | ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) |
| Ref | Expression |
|---|---|
| mbfres2 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfres2.4 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) | |
| 2 | 1 | reseq2d 5928 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐹 ↾ (𝐵 ∪ 𝐶)) = (𝐹 ↾ 𝐴)) |
| 3 | mbfres2.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 4 | ffn 6651 | . . . . . . . . . . . 12 ⊢ (𝐹:𝐴⟶ℝ → 𝐹 Fn 𝐴) | |
| 5 | fnresdm 6600 | . . . . . . . . . . . 12 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 6 | 3, 4, 5 | 3syl 18 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = 𝐹) |
| 7 | 2, 6 | eqtr2d 2767 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 = (𝐹 ↾ (𝐵 ∪ 𝐶))) |
| 8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → 𝐹 = (𝐹 ↾ (𝐵 ∪ 𝐶))) |
| 9 | resundi 5942 | . . . . . . . . 9 ⊢ (𝐹 ↾ (𝐵 ∪ 𝐶)) = ((𝐹 ↾ 𝐵) ∪ (𝐹 ↾ 𝐶)) | |
| 10 | 8, 9 | eqtrdi 2782 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → 𝐹 = ((𝐹 ↾ 𝐵) ∪ (𝐹 ↾ 𝐶))) |
| 11 | 10 | cnveqd 5815 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → ◡𝐹 = ◡((𝐹 ↾ 𝐵) ∪ (𝐹 ↾ 𝐶))) |
| 12 | cnvun 6089 | . . . . . . 7 ⊢ ◡((𝐹 ↾ 𝐵) ∪ (𝐹 ↾ 𝐶)) = (◡(𝐹 ↾ 𝐵) ∪ ◡(𝐹 ↾ 𝐶)) | |
| 13 | 11, 12 | eqtrdi 2782 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → ◡𝐹 = (◡(𝐹 ↾ 𝐵) ∪ ◡(𝐹 ↾ 𝐶))) |
| 14 | 13 | imaeq1d 6008 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡𝐹 “ 𝑥) = ((◡(𝐹 ↾ 𝐵) ∪ ◡(𝐹 ↾ 𝐶)) “ 𝑥)) |
| 15 | imaundir 6097 | . . . . 5 ⊢ ((◡(𝐹 ↾ 𝐵) ∪ ◡(𝐹 ↾ 𝐶)) “ 𝑥) = ((◡(𝐹 ↾ 𝐵) “ 𝑥) ∪ (◡(𝐹 ↾ 𝐶) “ 𝑥)) | |
| 16 | 14, 15 | eqtrdi 2782 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡𝐹 “ 𝑥) = ((◡(𝐹 ↾ 𝐵) “ 𝑥) ∪ (◡(𝐹 ↾ 𝐶) “ 𝑥))) |
| 17 | mbfres2.2 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) | |
| 18 | ssun1 4128 | . . . . . . . . . 10 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
| 19 | 18, 1 | sseqtrid 3977 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 20 | 3, 19 | fssresd 6690 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ↾ 𝐵):𝐵⟶ℝ) |
| 21 | ismbf 25557 | . . . . . . . 8 ⊢ ((𝐹 ↾ 𝐵):𝐵⟶ℝ → ((𝐹 ↾ 𝐵) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol)) | |
| 22 | 20, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol)) |
| 23 | 17, 22 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol) |
| 24 | 23 | r19.21bi 3224 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol) |
| 25 | mbfres2.3 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) | |
| 26 | ssun2 4129 | . . . . . . . . . 10 ⊢ 𝐶 ⊆ (𝐵 ∪ 𝐶) | |
| 27 | 26, 1 | sseqtrid 3977 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| 28 | 3, 27 | fssresd 6690 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶ℝ) |
| 29 | ismbf 25557 | . . . . . . . 8 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶ℝ → ((𝐹 ↾ 𝐶) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol)) | |
| 30 | 28, 29 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol)) |
| 31 | 25, 30 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol) |
| 32 | 31 | r19.21bi 3224 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol) |
| 33 | unmbl 25466 | . . . . 5 ⊢ (((◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol ∧ (◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol) → ((◡(𝐹 ↾ 𝐵) “ 𝑥) ∪ (◡(𝐹 ↾ 𝐶) “ 𝑥)) ∈ dom vol) | |
| 34 | 24, 32, 33 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → ((◡(𝐹 ↾ 𝐵) “ 𝑥) ∪ (◡(𝐹 ↾ 𝐶) “ 𝑥)) ∈ dom vol) |
| 35 | 16, 34 | eqeltrd 2831 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡𝐹 “ 𝑥) ∈ dom vol) |
| 36 | 35 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol) |
| 37 | ismbf 25557 | . . 3 ⊢ (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
| 38 | 3, 37 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) |
| 39 | 36, 38 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∪ cun 3900 ◡ccnv 5615 dom cdm 5616 ran crn 5617 ↾ cres 5618 “ cima 5619 Fn wfn 6476 ⟶wf 6477 ℝcr 11005 (,)cioo 13245 volcvol 25392 MblFncmbf 25543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xadd 13012 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-xmet 21285 df-met 21286 df-ovol 25393 df-vol 25394 df-mbf 25548 |
| This theorem is referenced by: mbfss 25575 mbfresfi 37712 mbfposadd 37713 mbfres2cn 46002 |
| Copyright terms: Public domain | W3C validator |