MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfres2 Structured version   Visualization version   GIF version

Theorem mbfres2 25668
Description: Measurability of a piecewise function: if 𝐹 is measurable on subsets 𝐵 and 𝐶 of its domain, and these pieces make up all of 𝐴, then 𝐹 is measurable on the whole domain. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
mbfres2.1 (𝜑𝐹:𝐴⟶ℝ)
mbfres2.2 (𝜑 → (𝐹𝐵) ∈ MblFn)
mbfres2.3 (𝜑 → (𝐹𝐶) ∈ MblFn)
mbfres2.4 (𝜑 → (𝐵𝐶) = 𝐴)
Assertion
Ref Expression
mbfres2 (𝜑𝐹 ∈ MblFn)

Proof of Theorem mbfres2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mbfres2.4 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐶) = 𝐴)
21reseq2d 5991 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐵𝐶)) = (𝐹𝐴))
3 mbfres2.1 . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℝ)
4 ffn 6730 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℝ → 𝐹 Fn 𝐴)
5 fnresdm 6682 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
63, 4, 53syl 18 . . . . . . . . . . 11 (𝜑 → (𝐹𝐴) = 𝐹)
72, 6eqtr2d 2767 . . . . . . . . . 10 (𝜑𝐹 = (𝐹 ↾ (𝐵𝐶)))
87adantr 479 . . . . . . . . 9 ((𝜑𝑥 ∈ ran (,)) → 𝐹 = (𝐹 ↾ (𝐵𝐶)))
9 resundi 6005 . . . . . . . . 9 (𝐹 ↾ (𝐵𝐶)) = ((𝐹𝐵) ∪ (𝐹𝐶))
108, 9eqtrdi 2782 . . . . . . . 8 ((𝜑𝑥 ∈ ran (,)) → 𝐹 = ((𝐹𝐵) ∪ (𝐹𝐶)))
1110cnveqd 5884 . . . . . . 7 ((𝜑𝑥 ∈ ran (,)) → 𝐹 = ((𝐹𝐵) ∪ (𝐹𝐶)))
12 cnvun 6156 . . . . . . 7 ((𝐹𝐵) ∪ (𝐹𝐶)) = ((𝐹𝐵) ∪ (𝐹𝐶))
1311, 12eqtrdi 2782 . . . . . 6 ((𝜑𝑥 ∈ ran (,)) → 𝐹 = ((𝐹𝐵) ∪ (𝐹𝐶)))
1413imaeq1d 6070 . . . . 5 ((𝜑𝑥 ∈ ran (,)) → (𝐹𝑥) = (((𝐹𝐵) ∪ (𝐹𝐶)) “ 𝑥))
15 imaundir 6164 . . . . 5 (((𝐹𝐵) ∪ (𝐹𝐶)) “ 𝑥) = (((𝐹𝐵) “ 𝑥) ∪ ((𝐹𝐶) “ 𝑥))
1614, 15eqtrdi 2782 . . . 4 ((𝜑𝑥 ∈ ran (,)) → (𝐹𝑥) = (((𝐹𝐵) “ 𝑥) ∪ ((𝐹𝐶) “ 𝑥)))
17 mbfres2.2 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ MblFn)
18 ssun1 4173 . . . . . . . . . 10 𝐵 ⊆ (𝐵𝐶)
1918, 1sseqtrid 4032 . . . . . . . . 9 (𝜑𝐵𝐴)
203, 19fssresd 6771 . . . . . . . 8 (𝜑 → (𝐹𝐵):𝐵⟶ℝ)
21 ismbf 25651 . . . . . . . 8 ((𝐹𝐵):𝐵⟶ℝ → ((𝐹𝐵) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)((𝐹𝐵) “ 𝑥) ∈ dom vol))
2220, 21syl 17 . . . . . . 7 (𝜑 → ((𝐹𝐵) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)((𝐹𝐵) “ 𝑥) ∈ dom vol))
2317, 22mpbid 231 . . . . . 6 (𝜑 → ∀𝑥 ∈ ran (,)((𝐹𝐵) “ 𝑥) ∈ dom vol)
2423r19.21bi 3239 . . . . 5 ((𝜑𝑥 ∈ ran (,)) → ((𝐹𝐵) “ 𝑥) ∈ dom vol)
25 mbfres2.3 . . . . . . 7 (𝜑 → (𝐹𝐶) ∈ MblFn)
26 ssun2 4174 . . . . . . . . . 10 𝐶 ⊆ (𝐵𝐶)
2726, 1sseqtrid 4032 . . . . . . . . 9 (𝜑𝐶𝐴)
283, 27fssresd 6771 . . . . . . . 8 (𝜑 → (𝐹𝐶):𝐶⟶ℝ)
29 ismbf 25651 . . . . . . . 8 ((𝐹𝐶):𝐶⟶ℝ → ((𝐹𝐶) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)((𝐹𝐶) “ 𝑥) ∈ dom vol))
3028, 29syl 17 . . . . . . 7 (𝜑 → ((𝐹𝐶) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)((𝐹𝐶) “ 𝑥) ∈ dom vol))
3125, 30mpbid 231 . . . . . 6 (𝜑 → ∀𝑥 ∈ ran (,)((𝐹𝐶) “ 𝑥) ∈ dom vol)
3231r19.21bi 3239 . . . . 5 ((𝜑𝑥 ∈ ran (,)) → ((𝐹𝐶) “ 𝑥) ∈ dom vol)
33 unmbl 25560 . . . . 5 ((((𝐹𝐵) “ 𝑥) ∈ dom vol ∧ ((𝐹𝐶) “ 𝑥) ∈ dom vol) → (((𝐹𝐵) “ 𝑥) ∪ ((𝐹𝐶) “ 𝑥)) ∈ dom vol)
3424, 32, 33syl2anc 582 . . . 4 ((𝜑𝑥 ∈ ran (,)) → (((𝐹𝐵) “ 𝑥) ∪ ((𝐹𝐶) “ 𝑥)) ∈ dom vol)
3516, 34eqeltrd 2826 . . 3 ((𝜑𝑥 ∈ ran (,)) → (𝐹𝑥) ∈ dom vol)
3635ralrimiva 3136 . 2 (𝜑 → ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol)
37 ismbf 25651 . . 3 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
383, 37syl 17 . 2 (𝜑 → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
3936, 38mpbird 256 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  cun 3945  ccnv 5683  dom cdm 5684  ran crn 5685  cres 5686  cima 5687   Fn wfn 6551  wf 6552  cr 11159  (,)cioo 13380  volcvol 25486  MblFncmbf 25637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-inf2 9686  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-pre-sup 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-se 5640  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-isom 6565  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7692  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-2o 8499  df-er 8736  df-map 8859  df-pm 8860  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-sup 9487  df-inf 9488  df-oi 9555  df-dju 9946  df-card 9984  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12613  df-uz 12877  df-q 12987  df-rp 13031  df-xadd 13149  df-ioo 13384  df-ico 13386  df-icc 13387  df-fz 13541  df-fzo 13684  df-fl 13814  df-seq 14024  df-exp 14084  df-hash 14350  df-cj 15106  df-re 15107  df-im 15108  df-sqrt 15242  df-abs 15243  df-clim 15492  df-sum 15693  df-xmet 21338  df-met 21339  df-ovol 25487  df-vol 25488  df-mbf 25642
This theorem is referenced by:  mbfss  25669  mbfresfi  37369  mbfposadd  37370  mbfres2cn  45597
  Copyright terms: Public domain W3C validator