Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mbfres2 | Structured version Visualization version GIF version |
Description: Measurability of a piecewise function: if 𝐹 is measurable on subsets 𝐵 and 𝐶 of its domain, and these pieces make up all of 𝐴, then 𝐹 is measurable on the whole domain. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
mbfres2.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
mbfres2.2 | ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) |
mbfres2.3 | ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) |
mbfres2.4 | ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) |
Ref | Expression |
---|---|
mbfres2 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfres2.4 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) | |
2 | 1 | reseq2d 5891 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐹 ↾ (𝐵 ∪ 𝐶)) = (𝐹 ↾ 𝐴)) |
3 | mbfres2.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
4 | ffn 6600 | . . . . . . . . . . . 12 ⊢ (𝐹:𝐴⟶ℝ → 𝐹 Fn 𝐴) | |
5 | fnresdm 6551 | . . . . . . . . . . . 12 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
6 | 3, 4, 5 | 3syl 18 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = 𝐹) |
7 | 2, 6 | eqtr2d 2779 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 = (𝐹 ↾ (𝐵 ∪ 𝐶))) |
8 | 7 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → 𝐹 = (𝐹 ↾ (𝐵 ∪ 𝐶))) |
9 | resundi 5905 | . . . . . . . . 9 ⊢ (𝐹 ↾ (𝐵 ∪ 𝐶)) = ((𝐹 ↾ 𝐵) ∪ (𝐹 ↾ 𝐶)) | |
10 | 8, 9 | eqtrdi 2794 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → 𝐹 = ((𝐹 ↾ 𝐵) ∪ (𝐹 ↾ 𝐶))) |
11 | 10 | cnveqd 5784 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → ◡𝐹 = ◡((𝐹 ↾ 𝐵) ∪ (𝐹 ↾ 𝐶))) |
12 | cnvun 6046 | . . . . . . 7 ⊢ ◡((𝐹 ↾ 𝐵) ∪ (𝐹 ↾ 𝐶)) = (◡(𝐹 ↾ 𝐵) ∪ ◡(𝐹 ↾ 𝐶)) | |
13 | 11, 12 | eqtrdi 2794 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → ◡𝐹 = (◡(𝐹 ↾ 𝐵) ∪ ◡(𝐹 ↾ 𝐶))) |
14 | 13 | imaeq1d 5968 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡𝐹 “ 𝑥) = ((◡(𝐹 ↾ 𝐵) ∪ ◡(𝐹 ↾ 𝐶)) “ 𝑥)) |
15 | imaundir 6054 | . . . . 5 ⊢ ((◡(𝐹 ↾ 𝐵) ∪ ◡(𝐹 ↾ 𝐶)) “ 𝑥) = ((◡(𝐹 ↾ 𝐵) “ 𝑥) ∪ (◡(𝐹 ↾ 𝐶) “ 𝑥)) | |
16 | 14, 15 | eqtrdi 2794 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡𝐹 “ 𝑥) = ((◡(𝐹 ↾ 𝐵) “ 𝑥) ∪ (◡(𝐹 ↾ 𝐶) “ 𝑥))) |
17 | mbfres2.2 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) | |
18 | ssun1 4106 | . . . . . . . . . 10 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
19 | 18, 1 | sseqtrid 3973 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
20 | 3, 19 | fssresd 6641 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ↾ 𝐵):𝐵⟶ℝ) |
21 | ismbf 24792 | . . . . . . . 8 ⊢ ((𝐹 ↾ 𝐵):𝐵⟶ℝ → ((𝐹 ↾ 𝐵) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol)) | |
22 | 20, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol)) |
23 | 17, 22 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol) |
24 | 23 | r19.21bi 3134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol) |
25 | mbfres2.3 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) | |
26 | ssun2 4107 | . . . . . . . . . 10 ⊢ 𝐶 ⊆ (𝐵 ∪ 𝐶) | |
27 | 26, 1 | sseqtrid 3973 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
28 | 3, 27 | fssresd 6641 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶ℝ) |
29 | ismbf 24792 | . . . . . . . 8 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶ℝ → ((𝐹 ↾ 𝐶) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol)) | |
30 | 28, 29 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol)) |
31 | 25, 30 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol) |
32 | 31 | r19.21bi 3134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol) |
33 | unmbl 24701 | . . . . 5 ⊢ (((◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol ∧ (◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol) → ((◡(𝐹 ↾ 𝐵) “ 𝑥) ∪ (◡(𝐹 ↾ 𝐶) “ 𝑥)) ∈ dom vol) | |
34 | 24, 32, 33 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → ((◡(𝐹 ↾ 𝐵) “ 𝑥) ∪ (◡(𝐹 ↾ 𝐶) “ 𝑥)) ∈ dom vol) |
35 | 16, 34 | eqeltrd 2839 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡𝐹 “ 𝑥) ∈ dom vol) |
36 | 35 | ralrimiva 3103 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol) |
37 | ismbf 24792 | . . 3 ⊢ (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
38 | 3, 37 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) |
39 | 36, 38 | mpbird 256 | 1 ⊢ (𝜑 → 𝐹 ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∪ cun 3885 ◡ccnv 5588 dom cdm 5589 ran crn 5590 ↾ cres 5591 “ cima 5592 Fn wfn 6428 ⟶wf 6429 ℝcr 10870 (,)cioo 13079 volcvol 24627 MblFncmbf 24778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xadd 12849 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-xmet 20590 df-met 20591 df-ovol 24628 df-vol 24629 df-mbf 24783 |
This theorem is referenced by: mbfss 24810 mbfresfi 35823 mbfposadd 35824 mbfres2cn 43499 |
Copyright terms: Public domain | W3C validator |