| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfres2 | Structured version Visualization version GIF version | ||
| Description: Measurability of a piecewise function: if 𝐹 is measurable on subsets 𝐵 and 𝐶 of its domain, and these pieces make up all of 𝐴, then 𝐹 is measurable on the whole domain. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbfres2.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| mbfres2.2 | ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) |
| mbfres2.3 | ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) |
| mbfres2.4 | ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) |
| Ref | Expression |
|---|---|
| mbfres2 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfres2.4 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) | |
| 2 | 1 | reseq2d 5950 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐹 ↾ (𝐵 ∪ 𝐶)) = (𝐹 ↾ 𝐴)) |
| 3 | mbfres2.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 4 | ffn 6688 | . . . . . . . . . . . 12 ⊢ (𝐹:𝐴⟶ℝ → 𝐹 Fn 𝐴) | |
| 5 | fnresdm 6637 | . . . . . . . . . . . 12 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 6 | 3, 4, 5 | 3syl 18 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = 𝐹) |
| 7 | 2, 6 | eqtr2d 2765 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 = (𝐹 ↾ (𝐵 ∪ 𝐶))) |
| 8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → 𝐹 = (𝐹 ↾ (𝐵 ∪ 𝐶))) |
| 9 | resundi 5964 | . . . . . . . . 9 ⊢ (𝐹 ↾ (𝐵 ∪ 𝐶)) = ((𝐹 ↾ 𝐵) ∪ (𝐹 ↾ 𝐶)) | |
| 10 | 8, 9 | eqtrdi 2780 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → 𝐹 = ((𝐹 ↾ 𝐵) ∪ (𝐹 ↾ 𝐶))) |
| 11 | 10 | cnveqd 5839 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → ◡𝐹 = ◡((𝐹 ↾ 𝐵) ∪ (𝐹 ↾ 𝐶))) |
| 12 | cnvun 6115 | . . . . . . 7 ⊢ ◡((𝐹 ↾ 𝐵) ∪ (𝐹 ↾ 𝐶)) = (◡(𝐹 ↾ 𝐵) ∪ ◡(𝐹 ↾ 𝐶)) | |
| 13 | 11, 12 | eqtrdi 2780 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → ◡𝐹 = (◡(𝐹 ↾ 𝐵) ∪ ◡(𝐹 ↾ 𝐶))) |
| 14 | 13 | imaeq1d 6030 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡𝐹 “ 𝑥) = ((◡(𝐹 ↾ 𝐵) ∪ ◡(𝐹 ↾ 𝐶)) “ 𝑥)) |
| 15 | imaundir 6123 | . . . . 5 ⊢ ((◡(𝐹 ↾ 𝐵) ∪ ◡(𝐹 ↾ 𝐶)) “ 𝑥) = ((◡(𝐹 ↾ 𝐵) “ 𝑥) ∪ (◡(𝐹 ↾ 𝐶) “ 𝑥)) | |
| 16 | 14, 15 | eqtrdi 2780 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡𝐹 “ 𝑥) = ((◡(𝐹 ↾ 𝐵) “ 𝑥) ∪ (◡(𝐹 ↾ 𝐶) “ 𝑥))) |
| 17 | mbfres2.2 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) | |
| 18 | ssun1 4141 | . . . . . . . . . 10 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
| 19 | 18, 1 | sseqtrid 3989 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 20 | 3, 19 | fssresd 6727 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ↾ 𝐵):𝐵⟶ℝ) |
| 21 | ismbf 25529 | . . . . . . . 8 ⊢ ((𝐹 ↾ 𝐵):𝐵⟶ℝ → ((𝐹 ↾ 𝐵) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol)) | |
| 22 | 20, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol)) |
| 23 | 17, 22 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol) |
| 24 | 23 | r19.21bi 3229 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol) |
| 25 | mbfres2.3 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) | |
| 26 | ssun2 4142 | . . . . . . . . . 10 ⊢ 𝐶 ⊆ (𝐵 ∪ 𝐶) | |
| 27 | 26, 1 | sseqtrid 3989 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| 28 | 3, 27 | fssresd 6727 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶ℝ) |
| 29 | ismbf 25529 | . . . . . . . 8 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶ℝ → ((𝐹 ↾ 𝐶) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol)) | |
| 30 | 28, 29 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol)) |
| 31 | 25, 30 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol) |
| 32 | 31 | r19.21bi 3229 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol) |
| 33 | unmbl 25438 | . . . . 5 ⊢ (((◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol ∧ (◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol) → ((◡(𝐹 ↾ 𝐵) “ 𝑥) ∪ (◡(𝐹 ↾ 𝐶) “ 𝑥)) ∈ dom vol) | |
| 34 | 24, 32, 33 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → ((◡(𝐹 ↾ 𝐵) “ 𝑥) ∪ (◡(𝐹 ↾ 𝐶) “ 𝑥)) ∈ dom vol) |
| 35 | 16, 34 | eqeltrd 2828 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡𝐹 “ 𝑥) ∈ dom vol) |
| 36 | 35 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol) |
| 37 | ismbf 25529 | . . 3 ⊢ (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
| 38 | 3, 37 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) |
| 39 | 36, 38 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cun 3912 ◡ccnv 5637 dom cdm 5638 ran crn 5639 ↾ cres 5640 “ cima 5641 Fn wfn 6506 ⟶wf 6507 ℝcr 11067 (,)cioo 13306 volcvol 25364 MblFncmbf 25515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xadd 13073 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-xmet 21257 df-met 21258 df-ovol 25365 df-vol 25366 df-mbf 25520 |
| This theorem is referenced by: mbfss 25547 mbfresfi 37660 mbfposadd 37661 mbfres2cn 45956 |
| Copyright terms: Public domain | W3C validator |