![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfres2 | Structured version Visualization version GIF version |
Description: Measurability of a piecewise function: if 𝐹 is measurable on subsets 𝐵 and 𝐶 of its domain, and these pieces make up all of 𝐴, then 𝐹 is measurable on the whole domain. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
mbfres2.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
mbfres2.2 | ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) |
mbfres2.3 | ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) |
mbfres2.4 | ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) |
Ref | Expression |
---|---|
mbfres2 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfres2.4 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) | |
2 | 1 | reseq2d 6009 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐹 ↾ (𝐵 ∪ 𝐶)) = (𝐹 ↾ 𝐴)) |
3 | mbfres2.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
4 | ffn 6747 | . . . . . . . . . . . 12 ⊢ (𝐹:𝐴⟶ℝ → 𝐹 Fn 𝐴) | |
5 | fnresdm 6699 | . . . . . . . . . . . 12 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
6 | 3, 4, 5 | 3syl 18 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = 𝐹) |
7 | 2, 6 | eqtr2d 2781 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 = (𝐹 ↾ (𝐵 ∪ 𝐶))) |
8 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → 𝐹 = (𝐹 ↾ (𝐵 ∪ 𝐶))) |
9 | resundi 6023 | . . . . . . . . 9 ⊢ (𝐹 ↾ (𝐵 ∪ 𝐶)) = ((𝐹 ↾ 𝐵) ∪ (𝐹 ↾ 𝐶)) | |
10 | 8, 9 | eqtrdi 2796 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → 𝐹 = ((𝐹 ↾ 𝐵) ∪ (𝐹 ↾ 𝐶))) |
11 | 10 | cnveqd 5900 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → ◡𝐹 = ◡((𝐹 ↾ 𝐵) ∪ (𝐹 ↾ 𝐶))) |
12 | cnvun 6174 | . . . . . . 7 ⊢ ◡((𝐹 ↾ 𝐵) ∪ (𝐹 ↾ 𝐶)) = (◡(𝐹 ↾ 𝐵) ∪ ◡(𝐹 ↾ 𝐶)) | |
13 | 11, 12 | eqtrdi 2796 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → ◡𝐹 = (◡(𝐹 ↾ 𝐵) ∪ ◡(𝐹 ↾ 𝐶))) |
14 | 13 | imaeq1d 6088 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡𝐹 “ 𝑥) = ((◡(𝐹 ↾ 𝐵) ∪ ◡(𝐹 ↾ 𝐶)) “ 𝑥)) |
15 | imaundir 6182 | . . . . 5 ⊢ ((◡(𝐹 ↾ 𝐵) ∪ ◡(𝐹 ↾ 𝐶)) “ 𝑥) = ((◡(𝐹 ↾ 𝐵) “ 𝑥) ∪ (◡(𝐹 ↾ 𝐶) “ 𝑥)) | |
16 | 14, 15 | eqtrdi 2796 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡𝐹 “ 𝑥) = ((◡(𝐹 ↾ 𝐵) “ 𝑥) ∪ (◡(𝐹 ↾ 𝐶) “ 𝑥))) |
17 | mbfres2.2 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) | |
18 | ssun1 4201 | . . . . . . . . . 10 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
19 | 18, 1 | sseqtrid 4061 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
20 | 3, 19 | fssresd 6788 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ↾ 𝐵):𝐵⟶ℝ) |
21 | ismbf 25682 | . . . . . . . 8 ⊢ ((𝐹 ↾ 𝐵):𝐵⟶ℝ → ((𝐹 ↾ 𝐵) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol)) | |
22 | 20, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol)) |
23 | 17, 22 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol) |
24 | 23 | r19.21bi 3257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol) |
25 | mbfres2.3 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) | |
26 | ssun2 4202 | . . . . . . . . . 10 ⊢ 𝐶 ⊆ (𝐵 ∪ 𝐶) | |
27 | 26, 1 | sseqtrid 4061 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
28 | 3, 27 | fssresd 6788 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶ℝ) |
29 | ismbf 25682 | . . . . . . . 8 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶ℝ → ((𝐹 ↾ 𝐶) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol)) | |
30 | 28, 29 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol)) |
31 | 25, 30 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ ran (,)(◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol) |
32 | 31 | r19.21bi 3257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol) |
33 | unmbl 25591 | . . . . 5 ⊢ (((◡(𝐹 ↾ 𝐵) “ 𝑥) ∈ dom vol ∧ (◡(𝐹 ↾ 𝐶) “ 𝑥) ∈ dom vol) → ((◡(𝐹 ↾ 𝐵) “ 𝑥) ∪ (◡(𝐹 ↾ 𝐶) “ 𝑥)) ∈ dom vol) | |
34 | 24, 32, 33 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → ((◡(𝐹 ↾ 𝐵) “ 𝑥) ∪ (◡(𝐹 ↾ 𝐶) “ 𝑥)) ∈ dom vol) |
35 | 16, 34 | eqeltrd 2844 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ran (,)) → (◡𝐹 “ 𝑥) ∈ dom vol) |
36 | 35 | ralrimiva 3152 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol) |
37 | ismbf 25682 | . . 3 ⊢ (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
38 | 3, 37 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) |
39 | 36, 38 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∪ cun 3974 ◡ccnv 5699 dom cdm 5700 ran crn 5701 ↾ cres 5702 “ cima 5703 Fn wfn 6568 ⟶wf 6569 ℝcr 11183 (,)cioo 13407 volcvol 25517 MblFncmbf 25668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xadd 13176 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-xmet 21380 df-met 21381 df-ovol 25518 df-vol 25519 df-mbf 25673 |
This theorem is referenced by: mbfss 25700 mbfresfi 37626 mbfposadd 37627 mbfres2cn 45879 |
Copyright terms: Public domain | W3C validator |