Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclrelexplem Structured version   Visualization version   GIF version

Theorem trclrelexplem 43707
Description: The union of relational powers to positive multiples of 𝑁 is a subset to the transitive closure raised to the power of 𝑁. (Contributed by RP, 15-Jun-2020.)
Assertion
Ref Expression
trclrelexplem (𝑁 ∈ ℕ → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑁) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑁))
Distinct variable groups:   𝐷,𝑗   𝐷,𝑘   𝑘,𝑁
Allowed substitution hint:   𝑁(𝑗)

Proof of Theorem trclrelexplem
Dummy variables 𝑥 𝑦 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . 4 (𝑥 = 1 → ((𝐷𝑟𝑘)↑𝑟𝑥) = ((𝐷𝑟𝑘)↑𝑟1))
21iuneq2d 4989 . . 3 (𝑥 = 1 → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) = 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1))
3 oveq2 7398 . . 3 (𝑥 = 1 → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1))
42, 3sseq12d 3983 . 2 (𝑥 = 1 → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) ↔ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1)))
5 oveq2 7398 . . . 4 (𝑥 = 𝑦 → ((𝐷𝑟𝑘)↑𝑟𝑥) = ((𝐷𝑟𝑘)↑𝑟𝑦))
65iuneq2d 4989 . . 3 (𝑥 = 𝑦 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) = 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦))
7 oveq2 7398 . . 3 (𝑥 = 𝑦 → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦))
86, 7sseq12d 3983 . 2 (𝑥 = 𝑦 → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) ↔ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)))
9 oveq2 7398 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐷𝑟𝑘)↑𝑟𝑥) = ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)))
109iuneq2d 4989 . . 3 (𝑥 = (𝑦 + 1) → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) = 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)))
11 oveq2 7398 . . 3 (𝑥 = (𝑦 + 1) → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)))
1210, 11sseq12d 3983 . 2 (𝑥 = (𝑦 + 1) → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) ↔ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1))))
13 oveq2 7398 . . . 4 (𝑥 = 𝑁 → ((𝐷𝑟𝑘)↑𝑟𝑥) = ((𝐷𝑟𝑘)↑𝑟𝑁))
1413iuneq2d 4989 . . 3 (𝑥 = 𝑁 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) = 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑁))
15 oveq2 7398 . . 3 (𝑥 = 𝑁 → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑁))
1614, 15sseq12d 3983 . 2 (𝑥 = 𝑁 → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) ↔ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑁) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑁)))
17 oveq2 7398 . . . . . 6 (𝑘 = 𝑙 → (𝐷𝑟𝑘) = (𝐷𝑟𝑙))
1817cbviunv 5007 . . . . 5 𝑘 ∈ ℕ (𝐷𝑟𝑘) = 𝑙 ∈ ℕ (𝐷𝑟𝑙)
19 oveq2 7398 . . . . . 6 (𝑙 = 𝑗 → (𝐷𝑟𝑙) = (𝐷𝑟𝑗))
2019cbviunv 5007 . . . . 5 𝑙 ∈ ℕ (𝐷𝑟𝑙) = 𝑗 ∈ ℕ (𝐷𝑟𝑗)
2118, 20eqtri 2753 . . . 4 𝑘 ∈ ℕ (𝐷𝑟𝑘) = 𝑗 ∈ ℕ (𝐷𝑟𝑗)
22 ovex 7423 . . . . . 6 (𝐷𝑟𝑘) ∈ V
23 relexp1g 14999 . . . . . 6 ((𝐷𝑟𝑘) ∈ V → ((𝐷𝑟𝑘)↑𝑟1) = (𝐷𝑟𝑘))
2422, 23mp1i 13 . . . . 5 (𝑘 ∈ ℕ → ((𝐷𝑟𝑘)↑𝑟1) = (𝐷𝑟𝑘))
2524iuneq2i 4980 . . . 4 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1) = 𝑘 ∈ ℕ (𝐷𝑟𝑘)
26 nnex 12199 . . . . . 6 ℕ ∈ V
27 ovex 7423 . . . . . 6 (𝐷𝑟𝑗) ∈ V
2826, 27iunex 7950 . . . . 5 𝑗 ∈ ℕ (𝐷𝑟𝑗) ∈ V
29 relexp1g 14999 . . . . 5 ( 𝑗 ∈ ℕ (𝐷𝑟𝑗) ∈ V → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝐷𝑟𝑗))
3028, 29ax-mp 5 . . . 4 ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝐷𝑟𝑗)
3121, 25, 303eqtr4i 2763 . . 3 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1)
3231eqimssi 4010 . 2 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1)
33 oveq2 7398 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝐷𝑟𝑘) = (𝐷𝑟𝑚))
3433oveq1d 7405 . . . . . . . . 9 (𝑘 = 𝑚 → ((𝐷𝑟𝑘)↑𝑟𝑦) = ((𝐷𝑟𝑚)↑𝑟𝑦))
3534, 33coeq12d 5831 . . . . . . . 8 (𝑘 = 𝑚 → (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) = (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
3635cbviunv 5007 . . . . . . 7 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) = 𝑚 ∈ ℕ (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
37 ss2iun 4977 . . . . . . . 8 (∀𝑚 ∈ ℕ (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) → 𝑚 ∈ ℕ (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
3834ssiun2s 5015 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝐷𝑟𝑚)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦))
39 coss1 5822 . . . . . . . . 9 (((𝐷𝑟𝑚)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) → (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4038, 39syl 17 . . . . . . . 8 (𝑚 ∈ ℕ → (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4137, 40mprg 3051 . . . . . . 7 𝑚 ∈ ℕ (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
4236, 41eqsstri 3996 . . . . . 6 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) ⊆ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
43 coss1 5822 . . . . . . . 8 ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4443ralrimivw 3130 . . . . . . 7 ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → ∀𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
45 ss2iun 4977 . . . . . . 7 (∀𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) → 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4644, 45syl 17 . . . . . 6 ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4742, 46sstrid 3961 . . . . 5 ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) ⊆ 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4847adantl 481 . . . 4 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)) → 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) ⊆ 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
49 relexpsucnnr 14998 . . . . . . 7 (((𝐷𝑟𝑘) ∈ V ∧ 𝑦 ∈ ℕ) → ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) = (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)))
5022, 49mpan 690 . . . . . 6 (𝑦 ∈ ℕ → ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) = (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)))
5150iuneq2d 4989 . . . . 5 (𝑦 ∈ ℕ → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) = 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)))
5251adantr 480 . . . 4 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)) → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) = 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)))
53 relexpsucnnr 14998 . . . . . . 7 (( 𝑗 ∈ ℕ (𝐷𝑟𝑗) ∈ V ∧ 𝑦 ∈ ℕ) → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)) = (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝐷𝑟𝑗)))
5428, 53mpan 690 . . . . . 6 (𝑦 ∈ ℕ → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)) = (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝐷𝑟𝑗)))
55 oveq2 7398 . . . . . . . . 9 (𝑗 = 𝑚 → (𝐷𝑟𝑗) = (𝐷𝑟𝑚))
5655cbviunv 5007 . . . . . . . 8 𝑗 ∈ ℕ (𝐷𝑟𝑗) = 𝑚 ∈ ℕ (𝐷𝑟𝑚)
5756coeq2i 5827 . . . . . . 7 (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝐷𝑟𝑗)) = (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑚 ∈ ℕ (𝐷𝑟𝑚))
58 coiun 6232 . . . . . . 7 (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑚 ∈ ℕ (𝐷𝑟𝑚)) = 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
5957, 58eqtri 2753 . . . . . 6 (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝐷𝑟𝑗)) = 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
6054, 59eqtrdi 2781 . . . . 5 (𝑦 ∈ ℕ → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)) = 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
6160adantr 480 . . . 4 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)) → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)) = 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
6248, 52, 613sstr4d 4005 . . 3 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)) → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)))
6362ex 412 . 2 (𝑦 ∈ ℕ → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1))))
644, 8, 12, 16, 32, 63nnind 12211 1 (𝑁 ∈ ℕ → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑁) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917   ciun 4958  ccom 5645  (class class class)co 7390  1c1 11076   + caddc 11078  cn 12193  𝑟crelexp 14992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-relexp 14993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator