| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7413 |
. . . 4
⊢ (𝑥 = 1 → ((𝐷↑𝑟𝑘)↑𝑟𝑥) = ((𝐷↑𝑟𝑘)↑𝑟1)) |
| 2 | 1 | iuneq2d 4998 |
. . 3
⊢ (𝑥 = 1 → ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑥) = ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟1)) |
| 3 | | oveq2 7413 |
. . 3
⊢ (𝑥 = 1 → (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑥) = (∪
𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟1)) |
| 4 | 2, 3 | sseq12d 3992 |
. 2
⊢ (𝑥 = 1 → (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑥) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑥) ↔ ∪
𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟1)
⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟1))) |
| 5 | | oveq2 7413 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐷↑𝑟𝑘)↑𝑟𝑥) = ((𝐷↑𝑟𝑘)↑𝑟𝑦)) |
| 6 | 5 | iuneq2d 4998 |
. . 3
⊢ (𝑥 = 𝑦 → ∪
𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑥) = ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦)) |
| 7 | | oveq2 7413 |
. . 3
⊢ (𝑥 = 𝑦 → (∪
𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑥) = (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦)) |
| 8 | 6, 7 | sseq12d 3992 |
. 2
⊢ (𝑥 = 𝑦 → (∪
𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑥) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑥) ↔ ∪
𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦))) |
| 9 | | oveq2 7413 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → ((𝐷↑𝑟𝑘)↑𝑟𝑥) = ((𝐷↑𝑟𝑘)↑𝑟(𝑦 + 1))) |
| 10 | 9 | iuneq2d 4998 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑥) = ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟(𝑦 + 1))) |
| 11 | | oveq2 7413 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑥) = (∪
𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟(𝑦 + 1))) |
| 12 | 10, 11 | sseq12d 3992 |
. 2
⊢ (𝑥 = (𝑦 + 1) → (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑥) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑥) ↔ ∪
𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟(𝑦 + 1)) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟(𝑦 + 1)))) |
| 13 | | oveq2 7413 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝐷↑𝑟𝑘)↑𝑟𝑥) = ((𝐷↑𝑟𝑘)↑𝑟𝑁)) |
| 14 | 13 | iuneq2d 4998 |
. . 3
⊢ (𝑥 = 𝑁 → ∪
𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑥) = ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑁)) |
| 15 | | oveq2 7413 |
. . 3
⊢ (𝑥 = 𝑁 → (∪
𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑥) = (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑁)) |
| 16 | 14, 15 | sseq12d 3992 |
. 2
⊢ (𝑥 = 𝑁 → (∪
𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑥) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑥) ↔ ∪
𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑁) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑁))) |
| 17 | | oveq2 7413 |
. . . . . 6
⊢ (𝑘 = 𝑙 → (𝐷↑𝑟𝑘) = (𝐷↑𝑟𝑙)) |
| 18 | 17 | cbviunv 5016 |
. . . . 5
⊢ ∪ 𝑘 ∈ ℕ (𝐷↑𝑟𝑘) = ∪ 𝑙 ∈ ℕ (𝐷↑𝑟𝑙) |
| 19 | | oveq2 7413 |
. . . . . 6
⊢ (𝑙 = 𝑗 → (𝐷↑𝑟𝑙) = (𝐷↑𝑟𝑗)) |
| 20 | 19 | cbviunv 5016 |
. . . . 5
⊢ ∪ 𝑙 ∈ ℕ (𝐷↑𝑟𝑙) = ∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗) |
| 21 | 18, 20 | eqtri 2758 |
. . . 4
⊢ ∪ 𝑘 ∈ ℕ (𝐷↑𝑟𝑘) = ∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗) |
| 22 | | ovex 7438 |
. . . . . 6
⊢ (𝐷↑𝑟𝑘) ∈ V |
| 23 | | relexp1g 15045 |
. . . . . 6
⊢ ((𝐷↑𝑟𝑘) ∈ V → ((𝐷↑𝑟𝑘)↑𝑟1) =
(𝐷↑𝑟𝑘)) |
| 24 | 22, 23 | mp1i 13 |
. . . . 5
⊢ (𝑘 ∈ ℕ → ((𝐷↑𝑟𝑘)↑𝑟1) =
(𝐷↑𝑟𝑘)) |
| 25 | 24 | iuneq2i 4989 |
. . . 4
⊢ ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟1) = ∪ 𝑘 ∈ ℕ (𝐷↑𝑟𝑘) |
| 26 | | nnex 12246 |
. . . . . 6
⊢ ℕ
∈ V |
| 27 | | ovex 7438 |
. . . . . 6
⊢ (𝐷↑𝑟𝑗) ∈ V |
| 28 | 26, 27 | iunex 7967 |
. . . . 5
⊢ ∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗) ∈ V |
| 29 | | relexp1g 15045 |
. . . . 5
⊢ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗) ∈ V → (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟1) = ∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)) |
| 30 | 28, 29 | ax-mp 5 |
. . . 4
⊢ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟1) = ∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗) |
| 31 | 21, 25, 30 | 3eqtr4i 2768 |
. . 3
⊢ ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟1) = (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟1) |
| 32 | 31 | eqimssi 4019 |
. 2
⊢ ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟1) ⊆
(∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟1) |
| 33 | | oveq2 7413 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → (𝐷↑𝑟𝑘) = (𝐷↑𝑟𝑚)) |
| 34 | 33 | oveq1d 7420 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → ((𝐷↑𝑟𝑘)↑𝑟𝑦) = ((𝐷↑𝑟𝑚)↑𝑟𝑦)) |
| 35 | 34, 33 | coeq12d 5844 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → (((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑘)) = (((𝐷↑𝑟𝑚)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚))) |
| 36 | 35 | cbviunv 5016 |
. . . . . . 7
⊢ ∪ 𝑘 ∈ ℕ (((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑘)) = ∪
𝑚 ∈ ℕ (((𝐷↑𝑟𝑚)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) |
| 37 | | ss2iun 4986 |
. . . . . . . 8
⊢
(∀𝑚 ∈
ℕ (((𝐷↑𝑟𝑚)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) ⊆ (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) → ∪
𝑚 ∈ ℕ (((𝐷↑𝑟𝑚)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) ⊆ ∪ 𝑚 ∈ ℕ (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚))) |
| 38 | 34 | ssiun2s 5024 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ → ((𝐷↑𝑟𝑚)↑𝑟𝑦) ⊆ ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦)) |
| 39 | | coss1 5835 |
. . . . . . . . 9
⊢ (((𝐷↑𝑟𝑚)↑𝑟𝑦) ⊆ ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) → (((𝐷↑𝑟𝑚)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) ⊆ (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚))) |
| 40 | 38, 39 | syl 17 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ → (((𝐷↑𝑟𝑚)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) ⊆ (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚))) |
| 41 | 37, 40 | mprg 3057 |
. . . . . . 7
⊢ ∪ 𝑚 ∈ ℕ (((𝐷↑𝑟𝑚)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) ⊆ ∪ 𝑚 ∈ ℕ (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) |
| 42 | 36, 41 | eqsstri 4005 |
. . . . . 6
⊢ ∪ 𝑘 ∈ ℕ (((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑘)) ⊆ ∪ 𝑚 ∈ ℕ (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) |
| 43 | | coss1 5835 |
. . . . . . . 8
⊢ (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) → (∪
𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) ⊆ ((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚))) |
| 44 | 43 | ralrimivw 3136 |
. . . . . . 7
⊢ (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) → ∀𝑚 ∈ ℕ (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) ⊆ ((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚))) |
| 45 | | ss2iun 4986 |
. . . . . . 7
⊢
(∀𝑚 ∈
ℕ (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) ⊆ ((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) → ∪
𝑚 ∈ ℕ (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) ⊆ ∪ 𝑚 ∈ ℕ ((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚))) |
| 46 | 44, 45 | syl 17 |
. . . . . 6
⊢ (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) → ∪
𝑚 ∈ ℕ (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) ⊆ ∪ 𝑚 ∈ ℕ ((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚))) |
| 47 | 42, 46 | sstrid 3970 |
. . . . 5
⊢ (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) → ∪
𝑘 ∈ ℕ (((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑘)) ⊆ ∪ 𝑚 ∈ ℕ ((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚))) |
| 48 | 47 | adantl 481 |
. . . 4
⊢ ((𝑦 ∈ ℕ ∧ ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦)) → ∪
𝑘 ∈ ℕ (((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑘)) ⊆ ∪ 𝑚 ∈ ℕ ((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚))) |
| 49 | | relexpsucnnr 15044 |
. . . . . . 7
⊢ (((𝐷↑𝑟𝑘) ∈ V ∧ 𝑦 ∈ ℕ) → ((𝐷↑𝑟𝑘)↑𝑟(𝑦 + 1)) = (((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑘))) |
| 50 | 22, 49 | mpan 690 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → ((𝐷↑𝑟𝑘)↑𝑟(𝑦 + 1)) = (((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑘))) |
| 51 | 50 | iuneq2d 4998 |
. . . . 5
⊢ (𝑦 ∈ ℕ → ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟(𝑦 + 1)) = ∪ 𝑘 ∈ ℕ (((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑘))) |
| 52 | 51 | adantr 480 |
. . . 4
⊢ ((𝑦 ∈ ℕ ∧ ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦)) → ∪
𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟(𝑦 + 1)) = ∪ 𝑘 ∈ ℕ (((𝐷↑𝑟𝑘)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑘))) |
| 53 | | relexpsucnnr 15044 |
. . . . . . 7
⊢
((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗) ∈ V ∧ 𝑦 ∈ ℕ) → (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟(𝑦 + 1)) = ((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ ∪
𝑗 ∈ ℕ (𝐷↑𝑟𝑗))) |
| 54 | 28, 53 | mpan 690 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟(𝑦 + 1)) = ((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ ∪
𝑗 ∈ ℕ (𝐷↑𝑟𝑗))) |
| 55 | | oveq2 7413 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → (𝐷↑𝑟𝑗) = (𝐷↑𝑟𝑚)) |
| 56 | 55 | cbviunv 5016 |
. . . . . . . 8
⊢ ∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗) = ∪ 𝑚 ∈ ℕ (𝐷↑𝑟𝑚) |
| 57 | 56 | coeq2i 5840 |
. . . . . . 7
⊢
((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ ∪
𝑗 ∈ ℕ (𝐷↑𝑟𝑗)) = ((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ ∪
𝑚 ∈ ℕ (𝐷↑𝑟𝑚)) |
| 58 | | coiun 6245 |
. . . . . . 7
⊢
((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ ∪
𝑚 ∈ ℕ (𝐷↑𝑟𝑚)) = ∪ 𝑚 ∈ ℕ ((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) |
| 59 | 57, 58 | eqtri 2758 |
. . . . . 6
⊢
((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ ∪
𝑗 ∈ ℕ (𝐷↑𝑟𝑗)) = ∪ 𝑚 ∈ ℕ ((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚)) |
| 60 | 54, 59 | eqtrdi 2786 |
. . . . 5
⊢ (𝑦 ∈ ℕ → (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟(𝑦 + 1)) = ∪ 𝑚 ∈ ℕ ((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚))) |
| 61 | 60 | adantr 480 |
. . . 4
⊢ ((𝑦 ∈ ℕ ∧ ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦)) → (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟(𝑦 + 1)) = ∪ 𝑚 ∈ ℕ ((∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) ∘ (𝐷↑𝑟𝑚))) |
| 62 | 48, 52, 61 | 3sstr4d 4014 |
. . 3
⊢ ((𝑦 ∈ ℕ ∧ ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦)) → ∪
𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟(𝑦 + 1)) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟(𝑦 + 1))) |
| 63 | 62 | ex 412 |
. 2
⊢ (𝑦 ∈ ℕ → (∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑦) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑦) → ∪
𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟(𝑦 + 1)) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟(𝑦 + 1)))) |
| 64 | 4, 8, 12, 16, 32, 63 | nnind 12258 |
1
⊢ (𝑁 ∈ ℕ → ∪ 𝑘 ∈ ℕ ((𝐷↑𝑟𝑘)↑𝑟𝑁) ⊆ (∪ 𝑗 ∈ ℕ (𝐷↑𝑟𝑗)↑𝑟𝑁)) |