Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclrelexplem Structured version   Visualization version   GIF version

Theorem trclrelexplem 43693
Description: The union of relational powers to positive multiples of 𝑁 is a subset to the transitive closure raised to the power of 𝑁. (Contributed by RP, 15-Jun-2020.)
Assertion
Ref Expression
trclrelexplem (𝑁 ∈ ℕ → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑁) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑁))
Distinct variable groups:   𝐷,𝑗   𝐷,𝑘   𝑘,𝑁
Allowed substitution hint:   𝑁(𝑗)

Proof of Theorem trclrelexplem
Dummy variables 𝑥 𝑦 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7377 . . . 4 (𝑥 = 1 → ((𝐷𝑟𝑘)↑𝑟𝑥) = ((𝐷𝑟𝑘)↑𝑟1))
21iuneq2d 4982 . . 3 (𝑥 = 1 → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) = 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1))
3 oveq2 7377 . . 3 (𝑥 = 1 → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1))
42, 3sseq12d 3977 . 2 (𝑥 = 1 → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) ↔ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1)))
5 oveq2 7377 . . . 4 (𝑥 = 𝑦 → ((𝐷𝑟𝑘)↑𝑟𝑥) = ((𝐷𝑟𝑘)↑𝑟𝑦))
65iuneq2d 4982 . . 3 (𝑥 = 𝑦 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) = 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦))
7 oveq2 7377 . . 3 (𝑥 = 𝑦 → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦))
86, 7sseq12d 3977 . 2 (𝑥 = 𝑦 → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) ↔ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)))
9 oveq2 7377 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐷𝑟𝑘)↑𝑟𝑥) = ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)))
109iuneq2d 4982 . . 3 (𝑥 = (𝑦 + 1) → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) = 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)))
11 oveq2 7377 . . 3 (𝑥 = (𝑦 + 1) → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)))
1210, 11sseq12d 3977 . 2 (𝑥 = (𝑦 + 1) → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) ↔ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1))))
13 oveq2 7377 . . . 4 (𝑥 = 𝑁 → ((𝐷𝑟𝑘)↑𝑟𝑥) = ((𝐷𝑟𝑘)↑𝑟𝑁))
1413iuneq2d 4982 . . 3 (𝑥 = 𝑁 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) = 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑁))
15 oveq2 7377 . . 3 (𝑥 = 𝑁 → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑁))
1614, 15sseq12d 3977 . 2 (𝑥 = 𝑁 → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) ↔ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑁) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑁)))
17 oveq2 7377 . . . . . 6 (𝑘 = 𝑙 → (𝐷𝑟𝑘) = (𝐷𝑟𝑙))
1817cbviunv 4999 . . . . 5 𝑘 ∈ ℕ (𝐷𝑟𝑘) = 𝑙 ∈ ℕ (𝐷𝑟𝑙)
19 oveq2 7377 . . . . . 6 (𝑙 = 𝑗 → (𝐷𝑟𝑙) = (𝐷𝑟𝑗))
2019cbviunv 4999 . . . . 5 𝑙 ∈ ℕ (𝐷𝑟𝑙) = 𝑗 ∈ ℕ (𝐷𝑟𝑗)
2118, 20eqtri 2752 . . . 4 𝑘 ∈ ℕ (𝐷𝑟𝑘) = 𝑗 ∈ ℕ (𝐷𝑟𝑗)
22 ovex 7402 . . . . . 6 (𝐷𝑟𝑘) ∈ V
23 relexp1g 14968 . . . . . 6 ((𝐷𝑟𝑘) ∈ V → ((𝐷𝑟𝑘)↑𝑟1) = (𝐷𝑟𝑘))
2422, 23mp1i 13 . . . . 5 (𝑘 ∈ ℕ → ((𝐷𝑟𝑘)↑𝑟1) = (𝐷𝑟𝑘))
2524iuneq2i 4973 . . . 4 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1) = 𝑘 ∈ ℕ (𝐷𝑟𝑘)
26 nnex 12168 . . . . . 6 ℕ ∈ V
27 ovex 7402 . . . . . 6 (𝐷𝑟𝑗) ∈ V
2826, 27iunex 7926 . . . . 5 𝑗 ∈ ℕ (𝐷𝑟𝑗) ∈ V
29 relexp1g 14968 . . . . 5 ( 𝑗 ∈ ℕ (𝐷𝑟𝑗) ∈ V → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝐷𝑟𝑗))
3028, 29ax-mp 5 . . . 4 ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝐷𝑟𝑗)
3121, 25, 303eqtr4i 2762 . . 3 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1)
3231eqimssi 4004 . 2 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1)
33 oveq2 7377 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝐷𝑟𝑘) = (𝐷𝑟𝑚))
3433oveq1d 7384 . . . . . . . . 9 (𝑘 = 𝑚 → ((𝐷𝑟𝑘)↑𝑟𝑦) = ((𝐷𝑟𝑚)↑𝑟𝑦))
3534, 33coeq12d 5818 . . . . . . . 8 (𝑘 = 𝑚 → (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) = (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
3635cbviunv 4999 . . . . . . 7 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) = 𝑚 ∈ ℕ (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
37 ss2iun 4970 . . . . . . . 8 (∀𝑚 ∈ ℕ (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) → 𝑚 ∈ ℕ (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
3834ssiun2s 5007 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝐷𝑟𝑚)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦))
39 coss1 5809 . . . . . . . . 9 (((𝐷𝑟𝑚)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) → (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4038, 39syl 17 . . . . . . . 8 (𝑚 ∈ ℕ → (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4137, 40mprg 3050 . . . . . . 7 𝑚 ∈ ℕ (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
4236, 41eqsstri 3990 . . . . . 6 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) ⊆ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
43 coss1 5809 . . . . . . . 8 ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4443ralrimivw 3129 . . . . . . 7 ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → ∀𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
45 ss2iun 4970 . . . . . . 7 (∀𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) → 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4644, 45syl 17 . . . . . 6 ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4742, 46sstrid 3955 . . . . 5 ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) ⊆ 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4847adantl 481 . . . 4 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)) → 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) ⊆ 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
49 relexpsucnnr 14967 . . . . . . 7 (((𝐷𝑟𝑘) ∈ V ∧ 𝑦 ∈ ℕ) → ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) = (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)))
5022, 49mpan 690 . . . . . 6 (𝑦 ∈ ℕ → ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) = (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)))
5150iuneq2d 4982 . . . . 5 (𝑦 ∈ ℕ → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) = 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)))
5251adantr 480 . . . 4 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)) → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) = 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)))
53 relexpsucnnr 14967 . . . . . . 7 (( 𝑗 ∈ ℕ (𝐷𝑟𝑗) ∈ V ∧ 𝑦 ∈ ℕ) → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)) = (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝐷𝑟𝑗)))
5428, 53mpan 690 . . . . . 6 (𝑦 ∈ ℕ → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)) = (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝐷𝑟𝑗)))
55 oveq2 7377 . . . . . . . . 9 (𝑗 = 𝑚 → (𝐷𝑟𝑗) = (𝐷𝑟𝑚))
5655cbviunv 4999 . . . . . . . 8 𝑗 ∈ ℕ (𝐷𝑟𝑗) = 𝑚 ∈ ℕ (𝐷𝑟𝑚)
5756coeq2i 5814 . . . . . . 7 (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝐷𝑟𝑗)) = (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑚 ∈ ℕ (𝐷𝑟𝑚))
58 coiun 6217 . . . . . . 7 (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑚 ∈ ℕ (𝐷𝑟𝑚)) = 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
5957, 58eqtri 2752 . . . . . 6 (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝐷𝑟𝑗)) = 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
6054, 59eqtrdi 2780 . . . . 5 (𝑦 ∈ ℕ → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)) = 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
6160adantr 480 . . . 4 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)) → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)) = 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
6248, 52, 613sstr4d 3999 . . 3 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)) → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)))
6362ex 412 . 2 (𝑦 ∈ ℕ → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1))))
644, 8, 12, 16, 32, 63nnind 12180 1 (𝑁 ∈ ℕ → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑁) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  wss 3911   ciun 4951  ccom 5635  (class class class)co 7369  1c1 11045   + caddc 11047  cn 12162  𝑟crelexp 14961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-seq 13943  df-relexp 14962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator