Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclrelexplem Structured version   Visualization version   GIF version

Theorem trclrelexplem 41319
Description: The union of relational powers to positive multiples of 𝑁 is a subset to the transitive closure raised to the power of 𝑁. (Contributed by RP, 15-Jun-2020.)
Assertion
Ref Expression
trclrelexplem (𝑁 ∈ ℕ → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑁) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑁))
Distinct variable groups:   𝐷,𝑗   𝐷,𝑘   𝑘,𝑁
Allowed substitution hint:   𝑁(𝑗)

Proof of Theorem trclrelexplem
Dummy variables 𝑥 𝑦 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7283 . . . 4 (𝑥 = 1 → ((𝐷𝑟𝑘)↑𝑟𝑥) = ((𝐷𝑟𝑘)↑𝑟1))
21iuneq2d 4953 . . 3 (𝑥 = 1 → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) = 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1))
3 oveq2 7283 . . 3 (𝑥 = 1 → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1))
42, 3sseq12d 3954 . 2 (𝑥 = 1 → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) ↔ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1)))
5 oveq2 7283 . . . 4 (𝑥 = 𝑦 → ((𝐷𝑟𝑘)↑𝑟𝑥) = ((𝐷𝑟𝑘)↑𝑟𝑦))
65iuneq2d 4953 . . 3 (𝑥 = 𝑦 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) = 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦))
7 oveq2 7283 . . 3 (𝑥 = 𝑦 → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦))
86, 7sseq12d 3954 . 2 (𝑥 = 𝑦 → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) ↔ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)))
9 oveq2 7283 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐷𝑟𝑘)↑𝑟𝑥) = ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)))
109iuneq2d 4953 . . 3 (𝑥 = (𝑦 + 1) → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) = 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)))
11 oveq2 7283 . . 3 (𝑥 = (𝑦 + 1) → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)))
1210, 11sseq12d 3954 . 2 (𝑥 = (𝑦 + 1) → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) ↔ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1))))
13 oveq2 7283 . . . 4 (𝑥 = 𝑁 → ((𝐷𝑟𝑘)↑𝑟𝑥) = ((𝐷𝑟𝑘)↑𝑟𝑁))
1413iuneq2d 4953 . . 3 (𝑥 = 𝑁 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) = 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑁))
15 oveq2 7283 . . 3 (𝑥 = 𝑁 → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑁))
1614, 15sseq12d 3954 . 2 (𝑥 = 𝑁 → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) ↔ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑁) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑁)))
17 oveq2 7283 . . . . . 6 (𝑘 = 𝑙 → (𝐷𝑟𝑘) = (𝐷𝑟𝑙))
1817cbviunv 4970 . . . . 5 𝑘 ∈ ℕ (𝐷𝑟𝑘) = 𝑙 ∈ ℕ (𝐷𝑟𝑙)
19 oveq2 7283 . . . . . 6 (𝑙 = 𝑗 → (𝐷𝑟𝑙) = (𝐷𝑟𝑗))
2019cbviunv 4970 . . . . 5 𝑙 ∈ ℕ (𝐷𝑟𝑙) = 𝑗 ∈ ℕ (𝐷𝑟𝑗)
2118, 20eqtri 2766 . . . 4 𝑘 ∈ ℕ (𝐷𝑟𝑘) = 𝑗 ∈ ℕ (𝐷𝑟𝑗)
22 ovex 7308 . . . . . 6 (𝐷𝑟𝑘) ∈ V
23 relexp1g 14737 . . . . . 6 ((𝐷𝑟𝑘) ∈ V → ((𝐷𝑟𝑘)↑𝑟1) = (𝐷𝑟𝑘))
2422, 23mp1i 13 . . . . 5 (𝑘 ∈ ℕ → ((𝐷𝑟𝑘)↑𝑟1) = (𝐷𝑟𝑘))
2524iuneq2i 4945 . . . 4 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1) = 𝑘 ∈ ℕ (𝐷𝑟𝑘)
26 nnex 11979 . . . . . 6 ℕ ∈ V
27 ovex 7308 . . . . . 6 (𝐷𝑟𝑗) ∈ V
2826, 27iunex 7811 . . . . 5 𝑗 ∈ ℕ (𝐷𝑟𝑗) ∈ V
29 relexp1g 14737 . . . . 5 ( 𝑗 ∈ ℕ (𝐷𝑟𝑗) ∈ V → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝐷𝑟𝑗))
3028, 29ax-mp 5 . . . 4 ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝐷𝑟𝑗)
3121, 25, 303eqtr4i 2776 . . 3 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1)
3231eqimssi 3979 . 2 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1)
33 oveq2 7283 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝐷𝑟𝑘) = (𝐷𝑟𝑚))
3433oveq1d 7290 . . . . . . . . 9 (𝑘 = 𝑚 → ((𝐷𝑟𝑘)↑𝑟𝑦) = ((𝐷𝑟𝑚)↑𝑟𝑦))
3534, 33coeq12d 5773 . . . . . . . 8 (𝑘 = 𝑚 → (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) = (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
3635cbviunv 4970 . . . . . . 7 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) = 𝑚 ∈ ℕ (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
37 ss2iun 4942 . . . . . . . 8 (∀𝑚 ∈ ℕ (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) → 𝑚 ∈ ℕ (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
3834ssiun2s 4978 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝐷𝑟𝑚)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦))
39 coss1 5764 . . . . . . . . 9 (((𝐷𝑟𝑚)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) → (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4038, 39syl 17 . . . . . . . 8 (𝑚 ∈ ℕ → (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4137, 40mprg 3078 . . . . . . 7 𝑚 ∈ ℕ (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
4236, 41eqsstri 3955 . . . . . 6 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) ⊆ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
43 coss1 5764 . . . . . . . 8 ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4443ralrimivw 3104 . . . . . . 7 ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → ∀𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
45 ss2iun 4942 . . . . . . 7 (∀𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) → 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4644, 45syl 17 . . . . . 6 ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4742, 46sstrid 3932 . . . . 5 ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) ⊆ 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4847adantl 482 . . . 4 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)) → 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) ⊆ 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
49 relexpsucnnr 14736 . . . . . . 7 (((𝐷𝑟𝑘) ∈ V ∧ 𝑦 ∈ ℕ) → ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) = (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)))
5022, 49mpan 687 . . . . . 6 (𝑦 ∈ ℕ → ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) = (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)))
5150iuneq2d 4953 . . . . 5 (𝑦 ∈ ℕ → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) = 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)))
5251adantr 481 . . . 4 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)) → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) = 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)))
53 relexpsucnnr 14736 . . . . . . 7 (( 𝑗 ∈ ℕ (𝐷𝑟𝑗) ∈ V ∧ 𝑦 ∈ ℕ) → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)) = (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝐷𝑟𝑗)))
5428, 53mpan 687 . . . . . 6 (𝑦 ∈ ℕ → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)) = (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝐷𝑟𝑗)))
55 oveq2 7283 . . . . . . . . 9 (𝑗 = 𝑚 → (𝐷𝑟𝑗) = (𝐷𝑟𝑚))
5655cbviunv 4970 . . . . . . . 8 𝑗 ∈ ℕ (𝐷𝑟𝑗) = 𝑚 ∈ ℕ (𝐷𝑟𝑚)
5756coeq2i 5769 . . . . . . 7 (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝐷𝑟𝑗)) = (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑚 ∈ ℕ (𝐷𝑟𝑚))
58 coiun 6160 . . . . . . 7 (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑚 ∈ ℕ (𝐷𝑟𝑚)) = 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
5957, 58eqtri 2766 . . . . . 6 (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝐷𝑟𝑗)) = 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
6054, 59eqtrdi 2794 . . . . 5 (𝑦 ∈ ℕ → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)) = 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
6160adantr 481 . . . 4 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)) → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)) = 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
6248, 52, 613sstr4d 3968 . . 3 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)) → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)))
6362ex 413 . 2 (𝑦 ∈ ℕ → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1))))
644, 8, 12, 16, 32, 63nnind 11991 1 (𝑁 ∈ ℕ → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑁) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887   ciun 4924  ccom 5593  (class class class)co 7275  1c1 10872   + caddc 10874  cn 11973  𝑟crelexp 14730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-relexp 14731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator