| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trclfvcom | Structured version Visualization version GIF version | ||
| Description: The transitive closure of a relation commutes with the relation. (Contributed by RP, 18-Jul-2020.) |
| Ref | Expression |
|---|---|
| trclfvcom | ⊢ (𝑅 ∈ 𝑉 → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3465 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | relexpsucnnr 14967 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ) → (𝑅↑𝑟(𝑛 + 1)) = ((𝑅↑𝑟𝑛) ∘ 𝑅)) | |
| 3 | relexpsucnnl 14972 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ) → (𝑅↑𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑛))) | |
| 4 | 2, 3 | eqtr3d 2766 | . . . 4 ⊢ ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ) → ((𝑅↑𝑟𝑛) ∘ 𝑅) = (𝑅 ∘ (𝑅↑𝑟𝑛))) |
| 5 | 4 | iuneq2dv 4976 | . . 3 ⊢ (𝑅 ∈ V → ∪ 𝑛 ∈ ℕ ((𝑅↑𝑟𝑛) ∘ 𝑅) = ∪ 𝑛 ∈ ℕ (𝑅 ∘ (𝑅↑𝑟𝑛))) |
| 6 | oveq1 7376 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
| 7 | 6 | iuneq2d 4982 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
| 8 | dftrcl3 43682 | . . . . . 6 ⊢ t+ = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) | |
| 9 | nnex 12168 | . . . . . . 7 ⊢ ℕ ∈ V | |
| 10 | ovex 7402 | . . . . . . 7 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
| 11 | 9, 10 | iunex 7926 | . . . . . 6 ⊢ ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ∈ V |
| 12 | 7, 8, 11 | fvmpt 6950 | . . . . 5 ⊢ (𝑅 ∈ V → (t+‘𝑅) = ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
| 13 | 12 | coeq1d 5815 | . . . 4 ⊢ (𝑅 ∈ V → ((t+‘𝑅) ∘ 𝑅) = (∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ∘ 𝑅)) |
| 14 | coiun1 43614 | . . . 4 ⊢ (∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ∘ 𝑅) = ∪ 𝑛 ∈ ℕ ((𝑅↑𝑟𝑛) ∘ 𝑅) | |
| 15 | 13, 14 | eqtrdi 2780 | . . 3 ⊢ (𝑅 ∈ V → ((t+‘𝑅) ∘ 𝑅) = ∪ 𝑛 ∈ ℕ ((𝑅↑𝑟𝑛) ∘ 𝑅)) |
| 16 | 12 | coeq2d 5816 | . . . 4 ⊢ (𝑅 ∈ V → (𝑅 ∘ (t+‘𝑅)) = (𝑅 ∘ ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛))) |
| 17 | coiun 6217 | . . . 4 ⊢ (𝑅 ∘ ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) = ∪ 𝑛 ∈ ℕ (𝑅 ∘ (𝑅↑𝑟𝑛)) | |
| 18 | 16, 17 | eqtrdi 2780 | . . 3 ⊢ (𝑅 ∈ V → (𝑅 ∘ (t+‘𝑅)) = ∪ 𝑛 ∈ ℕ (𝑅 ∘ (𝑅↑𝑟𝑛))) |
| 19 | 5, 15, 18 | 3eqtr4d 2774 | . 2 ⊢ (𝑅 ∈ V → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅))) |
| 20 | 1, 19 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∪ ciun 4951 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 1c1 11045 + caddc 11047 ℕcn 12162 t+ctcl 14927 ↑𝑟crelexp 14961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-seq 13943 df-trcl 14929 df-relexp 14962 |
| This theorem is referenced by: trclfvdecoml 43691 |
| Copyright terms: Public domain | W3C validator |