Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclfvcom Structured version   Visualization version   GIF version

Theorem trclfvcom 43714
Description: The transitive closure of a relation commutes with the relation. (Contributed by RP, 18-Jul-2020.)
Assertion
Ref Expression
trclfvcom (𝑅𝑉 → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅)))

Proof of Theorem trclfvcom
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3485 . 2 (𝑅𝑉𝑅 ∈ V)
2 relexpsucnnr 15049 . . . . 5 ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ) → (𝑅𝑟(𝑛 + 1)) = ((𝑅𝑟𝑛) ∘ 𝑅))
3 relexpsucnnl 15054 . . . . 5 ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ) → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)))
42, 3eqtr3d 2773 . . . 4 ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ) → ((𝑅𝑟𝑛) ∘ 𝑅) = (𝑅 ∘ (𝑅𝑟𝑛)))
54iuneq2dv 4997 . . 3 (𝑅 ∈ V → 𝑛 ∈ ℕ ((𝑅𝑟𝑛) ∘ 𝑅) = 𝑛 ∈ ℕ (𝑅 ∘ (𝑅𝑟𝑛)))
6 oveq1 7417 . . . . . . 7 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
76iuneq2d 5003 . . . . . 6 (𝑟 = 𝑅 𝑛 ∈ ℕ (𝑟𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
8 dftrcl3 43711 . . . . . 6 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
9 nnex 12251 . . . . . . 7 ℕ ∈ V
10 ovex 7443 . . . . . . 7 (𝑅𝑟𝑛) ∈ V
119, 10iunex 7972 . . . . . 6 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
127, 8, 11fvmpt 6991 . . . . 5 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
1312coeq1d 5846 . . . 4 (𝑅 ∈ V → ((t+‘𝑅) ∘ 𝑅) = ( 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∘ 𝑅))
14 coiun1 43643 . . . 4 ( 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∘ 𝑅) = 𝑛 ∈ ℕ ((𝑅𝑟𝑛) ∘ 𝑅)
1513, 14eqtrdi 2787 . . 3 (𝑅 ∈ V → ((t+‘𝑅) ∘ 𝑅) = 𝑛 ∈ ℕ ((𝑅𝑟𝑛) ∘ 𝑅))
1612coeq2d 5847 . . . 4 (𝑅 ∈ V → (𝑅 ∘ (t+‘𝑅)) = (𝑅 𝑛 ∈ ℕ (𝑅𝑟𝑛)))
17 coiun 6250 . . . 4 (𝑅 𝑛 ∈ ℕ (𝑅𝑟𝑛)) = 𝑛 ∈ ℕ (𝑅 ∘ (𝑅𝑟𝑛))
1816, 17eqtrdi 2787 . . 3 (𝑅 ∈ V → (𝑅 ∘ (t+‘𝑅)) = 𝑛 ∈ ℕ (𝑅 ∘ (𝑅𝑟𝑛)))
195, 15, 183eqtr4d 2781 . 2 (𝑅 ∈ V → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅)))
201, 19syl 17 1 (𝑅𝑉 → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464   ciun 4972  ccom 5663  cfv 6536  (class class class)co 7410  1c1 11135   + caddc 11137  cn 12245  t+ctcl 15009  𝑟crelexp 15043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-seq 14025  df-trcl 15011  df-relexp 15044
This theorem is referenced by:  trclfvdecoml  43720
  Copyright terms: Public domain W3C validator