![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trclfvcom | Structured version Visualization version GIF version |
Description: The transitive closure of a relation commutes with the relation. (Contributed by RP, 18-Jul-2020.) |
Ref | Expression |
---|---|
trclfvcom | ⊢ (𝑅 ∈ 𝑉 → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3434 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | relexpsucnnr 14245 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ) → (𝑅↑𝑟(𝑛 + 1)) = ((𝑅↑𝑟𝑛) ∘ 𝑅)) | |
3 | relexpsucnnl 14252 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ) → (𝑅↑𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑛))) | |
4 | 2, 3 | eqtr3d 2817 | . . . 4 ⊢ ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ) → ((𝑅↑𝑟𝑛) ∘ 𝑅) = (𝑅 ∘ (𝑅↑𝑟𝑛))) |
5 | 4 | iuneq2dv 4815 | . . 3 ⊢ (𝑅 ∈ V → ∪ 𝑛 ∈ ℕ ((𝑅↑𝑟𝑛) ∘ 𝑅) = ∪ 𝑛 ∈ ℕ (𝑅 ∘ (𝑅↑𝑟𝑛))) |
6 | oveq1 6983 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
7 | 6 | iuneq2d 4820 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
8 | dftrcl3 39425 | . . . . . 6 ⊢ t+ = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) | |
9 | nnex 11446 | . . . . . . 7 ⊢ ℕ ∈ V | |
10 | ovex 7008 | . . . . . . 7 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
11 | 9, 10 | iunex 7481 | . . . . . 6 ⊢ ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ∈ V |
12 | 7, 8, 11 | fvmpt 6595 | . . . . 5 ⊢ (𝑅 ∈ V → (t+‘𝑅) = ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
13 | 12 | coeq1d 5582 | . . . 4 ⊢ (𝑅 ∈ V → ((t+‘𝑅) ∘ 𝑅) = (∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ∘ 𝑅)) |
14 | coiun1 39357 | . . . 4 ⊢ (∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ∘ 𝑅) = ∪ 𝑛 ∈ ℕ ((𝑅↑𝑟𝑛) ∘ 𝑅) | |
15 | 13, 14 | syl6eq 2831 | . . 3 ⊢ (𝑅 ∈ V → ((t+‘𝑅) ∘ 𝑅) = ∪ 𝑛 ∈ ℕ ((𝑅↑𝑟𝑛) ∘ 𝑅)) |
16 | 12 | coeq2d 5583 | . . . 4 ⊢ (𝑅 ∈ V → (𝑅 ∘ (t+‘𝑅)) = (𝑅 ∘ ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛))) |
17 | coiun 5948 | . . . 4 ⊢ (𝑅 ∘ ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) = ∪ 𝑛 ∈ ℕ (𝑅 ∘ (𝑅↑𝑟𝑛)) | |
18 | 16, 17 | syl6eq 2831 | . . 3 ⊢ (𝑅 ∈ V → (𝑅 ∘ (t+‘𝑅)) = ∪ 𝑛 ∈ ℕ (𝑅 ∘ (𝑅↑𝑟𝑛))) |
19 | 5, 15, 18 | 3eqtr4d 2825 | . 2 ⊢ (𝑅 ∈ V → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅))) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 Vcvv 3416 ∪ ciun 4792 ∘ ccom 5411 ‘cfv 6188 (class class class)co 6976 1c1 10336 + caddc 10338 ℕcn 11439 t+ctcl 14206 ↑𝑟crelexp 14240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-n0 11708 df-z 11794 df-uz 12059 df-seq 13185 df-trcl 14208 df-relexp 14241 |
This theorem is referenced by: trclfvdecoml 39434 |
Copyright terms: Public domain | W3C validator |