Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclfvcom Structured version   Visualization version   GIF version

Theorem trclfvcom 43426
Description: The transitive closure of a relation commutes with the relation. (Contributed by RP, 18-Jul-2020.)
Assertion
Ref Expression
trclfvcom (𝑅𝑉 → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅)))

Proof of Theorem trclfvcom
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3484 . 2 (𝑅𝑉𝑅 ∈ V)
2 relexpsucnnr 15024 . . . . 5 ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ) → (𝑅𝑟(𝑛 + 1)) = ((𝑅𝑟𝑛) ∘ 𝑅))
3 relexpsucnnl 15029 . . . . 5 ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ) → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)))
42, 3eqtr3d 2768 . . . 4 ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ) → ((𝑅𝑟𝑛) ∘ 𝑅) = (𝑅 ∘ (𝑅𝑟𝑛)))
54iuneq2dv 5019 . . 3 (𝑅 ∈ V → 𝑛 ∈ ℕ ((𝑅𝑟𝑛) ∘ 𝑅) = 𝑛 ∈ ℕ (𝑅 ∘ (𝑅𝑟𝑛)))
6 oveq1 7422 . . . . . . 7 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
76iuneq2d 5024 . . . . . 6 (𝑟 = 𝑅 𝑛 ∈ ℕ (𝑟𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
8 dftrcl3 43423 . . . . . 6 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
9 nnex 12263 . . . . . . 7 ℕ ∈ V
10 ovex 7448 . . . . . . 7 (𝑅𝑟𝑛) ∈ V
119, 10iunex 7973 . . . . . 6 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
127, 8, 11fvmpt 7000 . . . . 5 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
1312coeq1d 5860 . . . 4 (𝑅 ∈ V → ((t+‘𝑅) ∘ 𝑅) = ( 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∘ 𝑅))
14 coiun1 43355 . . . 4 ( 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∘ 𝑅) = 𝑛 ∈ ℕ ((𝑅𝑟𝑛) ∘ 𝑅)
1513, 14eqtrdi 2782 . . 3 (𝑅 ∈ V → ((t+‘𝑅) ∘ 𝑅) = 𝑛 ∈ ℕ ((𝑅𝑟𝑛) ∘ 𝑅))
1612coeq2d 5861 . . . 4 (𝑅 ∈ V → (𝑅 ∘ (t+‘𝑅)) = (𝑅 𝑛 ∈ ℕ (𝑅𝑟𝑛)))
17 coiun 6259 . . . 4 (𝑅 𝑛 ∈ ℕ (𝑅𝑟𝑛)) = 𝑛 ∈ ℕ (𝑅 ∘ (𝑅𝑟𝑛))
1816, 17eqtrdi 2782 . . 3 (𝑅 ∈ V → (𝑅 ∘ (t+‘𝑅)) = 𝑛 ∈ ℕ (𝑅 ∘ (𝑅𝑟𝑛)))
195, 15, 183eqtr4d 2776 . 2 (𝑅 ∈ V → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅)))
201, 19syl 17 1 (𝑅𝑉 → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3464   ciun 4995  ccom 5678  cfv 6545  (class class class)co 7415  1c1 11149   + caddc 11151  cn 12257  t+ctcl 14984  𝑟crelexp 15018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7737  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3466  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3968  df-nul 4325  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4908  df-int 4949  df-iun 4997  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6370  df-on 6371  df-lim 6372  df-suc 6373  df-iota 6497  df-fun 6547  df-fn 6548  df-f 6549  df-f1 6550  df-fo 6551  df-f1o 6552  df-fv 6553  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8966  df-dom 8967  df-sdom 8968  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12258  df-2 12320  df-n0 12518  df-z 12604  df-uz 12868  df-seq 14015  df-trcl 14986  df-relexp 15019
This theorem is referenced by:  trclfvdecoml  43432
  Copyright terms: Public domain W3C validator