Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclfvcom Structured version   Visualization version   GIF version

Theorem trclfvcom 43713
Description: The transitive closure of a relation commutes with the relation. (Contributed by RP, 18-Jul-2020.)
Assertion
Ref Expression
trclfvcom (𝑅𝑉 → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅)))

Proof of Theorem trclfvcom
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3499 . 2 (𝑅𝑉𝑅 ∈ V)
2 relexpsucnnr 15061 . . . . 5 ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ) → (𝑅𝑟(𝑛 + 1)) = ((𝑅𝑟𝑛) ∘ 𝑅))
3 relexpsucnnl 15066 . . . . 5 ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ) → (𝑅𝑟(𝑛 + 1)) = (𝑅 ∘ (𝑅𝑟𝑛)))
42, 3eqtr3d 2777 . . . 4 ((𝑅 ∈ V ∧ 𝑛 ∈ ℕ) → ((𝑅𝑟𝑛) ∘ 𝑅) = (𝑅 ∘ (𝑅𝑟𝑛)))
54iuneq2dv 5021 . . 3 (𝑅 ∈ V → 𝑛 ∈ ℕ ((𝑅𝑟𝑛) ∘ 𝑅) = 𝑛 ∈ ℕ (𝑅 ∘ (𝑅𝑟𝑛)))
6 oveq1 7438 . . . . . . 7 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
76iuneq2d 5027 . . . . . 6 (𝑟 = 𝑅 𝑛 ∈ ℕ (𝑟𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
8 dftrcl3 43710 . . . . . 6 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
9 nnex 12270 . . . . . . 7 ℕ ∈ V
10 ovex 7464 . . . . . . 7 (𝑅𝑟𝑛) ∈ V
119, 10iunex 7992 . . . . . 6 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
127, 8, 11fvmpt 7016 . . . . 5 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
1312coeq1d 5875 . . . 4 (𝑅 ∈ V → ((t+‘𝑅) ∘ 𝑅) = ( 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∘ 𝑅))
14 coiun1 43642 . . . 4 ( 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∘ 𝑅) = 𝑛 ∈ ℕ ((𝑅𝑟𝑛) ∘ 𝑅)
1513, 14eqtrdi 2791 . . 3 (𝑅 ∈ V → ((t+‘𝑅) ∘ 𝑅) = 𝑛 ∈ ℕ ((𝑅𝑟𝑛) ∘ 𝑅))
1612coeq2d 5876 . . . 4 (𝑅 ∈ V → (𝑅 ∘ (t+‘𝑅)) = (𝑅 𝑛 ∈ ℕ (𝑅𝑟𝑛)))
17 coiun 6278 . . . 4 (𝑅 𝑛 ∈ ℕ (𝑅𝑟𝑛)) = 𝑛 ∈ ℕ (𝑅 ∘ (𝑅𝑟𝑛))
1816, 17eqtrdi 2791 . . 3 (𝑅 ∈ V → (𝑅 ∘ (t+‘𝑅)) = 𝑛 ∈ ℕ (𝑅 ∘ (𝑅𝑟𝑛)))
195, 15, 183eqtr4d 2785 . 2 (𝑅 ∈ V → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅)))
201, 19syl 17 1 (𝑅𝑉 → ((t+‘𝑅) ∘ 𝑅) = (𝑅 ∘ (t+‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478   ciun 4996  ccom 5693  cfv 6563  (class class class)co 7431  1c1 11154   + caddc 11156  cn 12264  t+ctcl 15021  𝑟crelexp 15055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-trcl 15023  df-relexp 15056
This theorem is referenced by:  trclfvdecoml  43719
  Copyright terms: Public domain W3C validator