Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclfvdecomr Structured version   Visualization version   GIF version

Theorem trclfvdecomr 43071
Description: The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020.)
Assertion
Ref Expression
trclfvdecomr (𝑅𝑉 → (t+‘𝑅) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅)))

Proof of Theorem trclfvdecomr
Dummy variables 𝑚 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3488 . . 3 (𝑅𝑉𝑅 ∈ V)
2 oveq1 7421 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
32iuneq2d 5020 . . . 4 (𝑟 = 𝑅 𝑛 ∈ ℕ (𝑟𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
4 dftrcl3 43063 . . . 4 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
5 nnex 12234 . . . . 5 ℕ ∈ V
6 ovex 7447 . . . . 5 (𝑅𝑟𝑛) ∈ V
75, 6iunex 7964 . . . 4 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
83, 4, 7fvmpt 6999 . . 3 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
91, 8syl 17 . 2 (𝑅𝑉 → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
10 nnuz 12881 . . . . . 6 ℕ = (ℤ‘1)
11 2eluzge1 12894 . . . . . . 7 2 ∈ (ℤ‘1)
12 uzsplit 13591 . . . . . . 7 (2 ∈ (ℤ‘1) → (ℤ‘1) = ((1...(2 − 1)) ∪ (ℤ‘2)))
1311, 12ax-mp 5 . . . . . 6 (ℤ‘1) = ((1...(2 − 1)) ∪ (ℤ‘2))
14 2m1e1 12354 . . . . . . . . 9 (2 − 1) = 1
1514oveq2i 7425 . . . . . . . 8 (1...(2 − 1)) = (1...1)
16 1z 12608 . . . . . . . . 9 1 ∈ ℤ
17 fzsn 13561 . . . . . . . . 9 (1 ∈ ℤ → (1...1) = {1})
1816, 17ax-mp 5 . . . . . . . 8 (1...1) = {1}
1915, 18eqtri 2755 . . . . . . 7 (1...(2 − 1)) = {1}
2019uneq1i 4155 . . . . . 6 ((1...(2 − 1)) ∪ (ℤ‘2)) = ({1} ∪ (ℤ‘2))
2110, 13, 203eqtri 2759 . . . . 5 ℕ = ({1} ∪ (ℤ‘2))
22 iuneq1 5007 . . . . 5 (ℕ = ({1} ∪ (ℤ‘2)) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ({1} ∪ (ℤ‘2))(𝑅𝑟𝑛))
2321, 22ax-mp 5 . . . 4 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ({1} ∪ (ℤ‘2))(𝑅𝑟𝑛)
24 iunxun 5091 . . . 4 𝑛 ∈ ({1} ∪ (ℤ‘2))(𝑅𝑟𝑛) = ( 𝑛 ∈ {1} (𝑅𝑟𝑛) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
25 1ex 11226 . . . . . 6 1 ∈ V
26 oveq2 7422 . . . . . 6 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
2725, 26iunxsn 5088 . . . . 5 𝑛 ∈ {1} (𝑅𝑟𝑛) = (𝑅𝑟1)
2827uneq1i 4155 . . . 4 ( 𝑛 ∈ {1} (𝑅𝑟𝑛) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛)) = ((𝑅𝑟1) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
2923, 24, 283eqtri 2759 . . 3 𝑛 ∈ ℕ (𝑅𝑟𝑛) = ((𝑅𝑟1) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
30 relexp1g 14991 . . . 4 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
31 oveq1 7421 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑟𝑟𝑚) = (𝑅𝑟𝑚))
3231iuneq2d 5020 . . . . . . . . 9 (𝑟 = 𝑅 𝑚 ∈ ℕ (𝑟𝑟𝑚) = 𝑚 ∈ ℕ (𝑅𝑟𝑚))
33 dftrcl3 43063 . . . . . . . . 9 t+ = (𝑟 ∈ V ↦ 𝑚 ∈ ℕ (𝑟𝑟𝑚))
34 ovex 7447 . . . . . . . . . 10 (𝑅𝑟𝑚) ∈ V
355, 34iunex 7964 . . . . . . . . 9 𝑚 ∈ ℕ (𝑅𝑟𝑚) ∈ V
3632, 33, 35fvmpt 6999 . . . . . . . 8 (𝑅 ∈ V → (t+‘𝑅) = 𝑚 ∈ ℕ (𝑅𝑟𝑚))
371, 36syl 17 . . . . . . 7 (𝑅𝑉 → (t+‘𝑅) = 𝑚 ∈ ℕ (𝑅𝑟𝑚))
3837coeq1d 5858 . . . . . 6 (𝑅𝑉 → ((t+‘𝑅) ∘ 𝑅) = ( 𝑚 ∈ ℕ (𝑅𝑟𝑚) ∘ 𝑅))
39 coiun1 42995 . . . . . . 7 ( 𝑚 ∈ ℕ (𝑅𝑟𝑚) ∘ 𝑅) = 𝑚 ∈ ℕ ((𝑅𝑟𝑚) ∘ 𝑅)
40 uz2m1nn 12923 . . . . . . . . 9 (𝑛 ∈ (ℤ‘2) → (𝑛 − 1) ∈ ℕ)
4140adantl 481 . . . . . . . 8 ((𝑅𝑉𝑛 ∈ (ℤ‘2)) → (𝑛 − 1) ∈ ℕ)
42 eluzp1p1 12866 . . . . . . . . . . 11 (𝑚 ∈ (ℤ‘1) → (𝑚 + 1) ∈ (ℤ‘(1 + 1)))
4342, 10eleq2s 2846 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ (ℤ‘(1 + 1)))
44 1p1e2 12353 . . . . . . . . . . 11 (1 + 1) = 2
4544fveq2i 6894 . . . . . . . . . 10 (ℤ‘(1 + 1)) = (ℤ‘2)
4643, 45eleqtrdi 2838 . . . . . . . . 9 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ (ℤ‘2))
4746adantl 481 . . . . . . . 8 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑚 + 1) ∈ (ℤ‘2))
48 oveq2 7422 . . . . . . . . . 10 (𝑚 = (𝑛 − 1) → (𝑅𝑟𝑚) = (𝑅𝑟(𝑛 − 1)))
4948coeq1d 5858 . . . . . . . . 9 (𝑚 = (𝑛 − 1) → ((𝑅𝑟𝑚) ∘ 𝑅) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
50493ad2ant3 1133 . . . . . . . 8 ((𝑅𝑉𝑛 ∈ (ℤ‘2) ∧ 𝑚 = (𝑛 − 1)) → ((𝑅𝑟𝑚) ∘ 𝑅) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
51 oveq2 7422 . . . . . . . . 9 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
52513ad2ant3 1133 . . . . . . . 8 ((𝑅𝑉𝑚 ∈ ℕ ∧ 𝑛 = (𝑚 + 1)) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
53 relexpsucnnr 14990 . . . . . . . . 9 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
5453eqcomd 2733 . . . . . . . 8 ((𝑅𝑉𝑚 ∈ ℕ) → ((𝑅𝑟𝑚) ∘ 𝑅) = (𝑅𝑟(𝑚 + 1)))
55 relexpsucnnr 14990 . . . . . . . . . 10 ((𝑅𝑉 ∧ (𝑛 − 1) ∈ ℕ) → (𝑅𝑟((𝑛 − 1) + 1)) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
5640, 55sylan2 592 . . . . . . . . 9 ((𝑅𝑉𝑛 ∈ (ℤ‘2)) → (𝑅𝑟((𝑛 − 1) + 1)) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
57 eluzelcn 12850 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℂ)
58 npcan1 11655 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → ((𝑛 − 1) + 1) = 𝑛)
59 oveq2 7422 . . . . . . . . . . . 12 (((𝑛 − 1) + 1) = 𝑛 → (𝑅𝑟((𝑛 − 1) + 1)) = (𝑅𝑟𝑛))
6057, 58, 593syl 18 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘2) → (𝑅𝑟((𝑛 − 1) + 1)) = (𝑅𝑟𝑛))
6160eqeq1d 2729 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘2) → ((𝑅𝑟((𝑛 − 1) + 1)) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅) ↔ (𝑅𝑟𝑛) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅)))
6261adantl 481 . . . . . . . . 9 ((𝑅𝑉𝑛 ∈ (ℤ‘2)) → ((𝑅𝑟((𝑛 − 1) + 1)) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅) ↔ (𝑅𝑟𝑛) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅)))
6356, 62mpbid 231 . . . . . . . 8 ((𝑅𝑉𝑛 ∈ (ℤ‘2)) → (𝑅𝑟𝑛) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
6441, 47, 50, 52, 54, 63cbviuneq12dv 43005 . . . . . . 7 (𝑅𝑉 𝑚 ∈ ℕ ((𝑅𝑟𝑚) ∘ 𝑅) = 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
6539, 64eqtrid 2779 . . . . . 6 (𝑅𝑉 → ( 𝑚 ∈ ℕ (𝑅𝑟𝑚) ∘ 𝑅) = 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
6638, 65eqtrd 2767 . . . . 5 (𝑅𝑉 → ((t+‘𝑅) ∘ 𝑅) = 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
6766eqcomd 2733 . . . 4 (𝑅𝑉 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛) = ((t+‘𝑅) ∘ 𝑅))
6830, 67uneq12d 4160 . . 3 (𝑅𝑉 → ((𝑅𝑟1) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛)) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅)))
6929, 68eqtrid 2779 . 2 (𝑅𝑉 𝑛 ∈ ℕ (𝑅𝑟𝑛) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅)))
709, 69eqtrd 2767 1 (𝑅𝑉 → (t+‘𝑅) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  Vcvv 3469  cun 3942  {csn 4624   ciun 4991  ccom 5676  cfv 6542  (class class class)co 7414  cc 11122  1c1 11125   + caddc 11127  cmin 11460  cn 12228  2c2 12283  cz 12574  cuz 12838  ...cfz 13502  t+ctcl 14950  𝑟crelexp 14984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-2 12291  df-n0 12489  df-z 12575  df-uz 12839  df-fz 13503  df-seq 13985  df-trcl 14952  df-relexp 14985
This theorem is referenced by:  trclfvdecoml  43072  dmtrclfvRP  43073  frege124d  43104  frege131d  43107
  Copyright terms: Public domain W3C validator