Step | Hyp | Ref
| Expression |
1 | | elex 3440 |
. . 3
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
2 | | oveq1 7262 |
. . . . 5
⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) |
3 | 2 | iuneq2d 4950 |
. . . 4
⊢ (𝑟 = 𝑅 → ∪
𝑛 ∈ ℕ (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
4 | | dftrcl3 41217 |
. . . 4
⊢ t+ =
(𝑟 ∈ V ↦
∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
5 | | nnex 11909 |
. . . . 5
⊢ ℕ
∈ V |
6 | | ovex 7288 |
. . . . 5
⊢ (𝑅↑𝑟𝑛) ∈ V |
7 | 5, 6 | iunex 7784 |
. . . 4
⊢ ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ∈ V |
8 | 3, 4, 7 | fvmpt 6857 |
. . 3
⊢ (𝑅 ∈ V → (t+‘𝑅) = ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
9 | 1, 8 | syl 17 |
. 2
⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∪
𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
10 | | nnuz 12550 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
11 | | 2eluzge1 12563 |
. . . . . . 7
⊢ 2 ∈
(ℤ≥‘1) |
12 | | uzsplit 13257 |
. . . . . . 7
⊢ (2 ∈
(ℤ≥‘1) → (ℤ≥‘1) =
((1...(2 − 1)) ∪ (ℤ≥‘2))) |
13 | 11, 12 | ax-mp 5 |
. . . . . 6
⊢
(ℤ≥‘1) = ((1...(2 − 1)) ∪
(ℤ≥‘2)) |
14 | | 2m1e1 12029 |
. . . . . . . . 9
⊢ (2
− 1) = 1 |
15 | 14 | oveq2i 7266 |
. . . . . . . 8
⊢ (1...(2
− 1)) = (1...1) |
16 | | 1z 12280 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
17 | | fzsn 13227 |
. . . . . . . . 9
⊢ (1 ∈
ℤ → (1...1) = {1}) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . 8
⊢ (1...1) =
{1} |
19 | 15, 18 | eqtri 2766 |
. . . . . . 7
⊢ (1...(2
− 1)) = {1} |
20 | 19 | uneq1i 4089 |
. . . . . 6
⊢ ((1...(2
− 1)) ∪ (ℤ≥‘2)) = ({1} ∪
(ℤ≥‘2)) |
21 | 10, 13, 20 | 3eqtri 2770 |
. . . . 5
⊢ ℕ =
({1} ∪ (ℤ≥‘2)) |
22 | | iuneq1 4937 |
. . . . 5
⊢ (ℕ
= ({1} ∪ (ℤ≥‘2)) → ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) = ∪ 𝑛 ∈ ({1} ∪
(ℤ≥‘2))(𝑅↑𝑟𝑛)) |
23 | 21, 22 | ax-mp 5 |
. . . 4
⊢ ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) = ∪ 𝑛 ∈ ({1} ∪
(ℤ≥‘2))(𝑅↑𝑟𝑛) |
24 | | iunxun 5019 |
. . . 4
⊢ ∪ 𝑛 ∈ ({1} ∪
(ℤ≥‘2))(𝑅↑𝑟𝑛) = (∪
𝑛 ∈ {1} (𝑅↑𝑟𝑛) ∪ ∪ 𝑛 ∈
(ℤ≥‘2)(𝑅↑𝑟𝑛)) |
25 | | 1ex 10902 |
. . . . . 6
⊢ 1 ∈
V |
26 | | oveq2 7263 |
. . . . . 6
⊢ (𝑛 = 1 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟1)) |
27 | 25, 26 | iunxsn 5016 |
. . . . 5
⊢ ∪ 𝑛 ∈ {1} (𝑅↑𝑟𝑛) = (𝑅↑𝑟1) |
28 | 27 | uneq1i 4089 |
. . . 4
⊢ (∪ 𝑛 ∈ {1} (𝑅↑𝑟𝑛) ∪ ∪
𝑛 ∈
(ℤ≥‘2)(𝑅↑𝑟𝑛)) = ((𝑅↑𝑟1) ∪ ∪ 𝑛 ∈
(ℤ≥‘2)(𝑅↑𝑟𝑛)) |
29 | 23, 24, 28 | 3eqtri 2770 |
. . 3
⊢ ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) = ((𝑅↑𝑟1) ∪ ∪ 𝑛 ∈
(ℤ≥‘2)(𝑅↑𝑟𝑛)) |
30 | | relexp1g 14665 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
31 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑚) = (𝑅↑𝑟𝑚)) |
32 | 31 | iuneq2d 4950 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → ∪
𝑚 ∈ ℕ (𝑟↑𝑟𝑚) = ∪ 𝑚 ∈ ℕ (𝑅↑𝑟𝑚)) |
33 | | dftrcl3 41217 |
. . . . . . . . 9
⊢ t+ =
(𝑟 ∈ V ↦
∪ 𝑚 ∈ ℕ (𝑟↑𝑟𝑚)) |
34 | | ovex 7288 |
. . . . . . . . . 10
⊢ (𝑅↑𝑟𝑚) ∈ V |
35 | 5, 34 | iunex 7784 |
. . . . . . . . 9
⊢ ∪ 𝑚 ∈ ℕ (𝑅↑𝑟𝑚) ∈ V |
36 | 32, 33, 35 | fvmpt 6857 |
. . . . . . . 8
⊢ (𝑅 ∈ V → (t+‘𝑅) = ∪ 𝑚 ∈ ℕ (𝑅↑𝑟𝑚)) |
37 | 1, 36 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∪
𝑚 ∈ ℕ (𝑅↑𝑟𝑚)) |
38 | 37 | coeq1d 5759 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → ((t+‘𝑅) ∘ 𝑅) = (∪
𝑚 ∈ ℕ (𝑅↑𝑟𝑚) ∘ 𝑅)) |
39 | | coiun1 41149 |
. . . . . . 7
⊢ (∪ 𝑚 ∈ ℕ (𝑅↑𝑟𝑚) ∘ 𝑅) = ∪
𝑚 ∈ ℕ ((𝑅↑𝑟𝑚) ∘ 𝑅) |
40 | | uz2m1nn 12592 |
. . . . . . . . 9
⊢ (𝑛 ∈
(ℤ≥‘2) → (𝑛 − 1) ∈ ℕ) |
41 | 40 | adantl 481 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑛 ∈ (ℤ≥‘2))
→ (𝑛 − 1) ∈
ℕ) |
42 | | eluzp1p1 12539 |
. . . . . . . . . . 11
⊢ (𝑚 ∈
(ℤ≥‘1) → (𝑚 + 1) ∈ (ℤ≥‘(1
+ 1))) |
43 | 42, 10 | eleq2s 2857 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈
(ℤ≥‘(1 + 1))) |
44 | | 1p1e2 12028 |
. . . . . . . . . . 11
⊢ (1 + 1) =
2 |
45 | 44 | fveq2i 6759 |
. . . . . . . . . 10
⊢
(ℤ≥‘(1 + 1)) =
(ℤ≥‘2) |
46 | 43, 45 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈
(ℤ≥‘2)) |
47 | 46 | adantl 481 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈
(ℤ≥‘2)) |
48 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑛 − 1) → (𝑅↑𝑟𝑚) = (𝑅↑𝑟(𝑛 − 1))) |
49 | 48 | coeq1d 5759 |
. . . . . . . . 9
⊢ (𝑚 = (𝑛 − 1) → ((𝑅↑𝑟𝑚) ∘ 𝑅) = ((𝑅↑𝑟(𝑛 − 1)) ∘ 𝑅)) |
50 | 49 | 3ad2ant3 1133 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑛 ∈ (ℤ≥‘2)
∧ 𝑚 = (𝑛 − 1)) → ((𝑅↑𝑟𝑚) ∘ 𝑅) = ((𝑅↑𝑟(𝑛 − 1)) ∘ 𝑅)) |
51 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑛 = (𝑚 + 1) → (𝑅↑𝑟𝑛) = (𝑅↑𝑟(𝑚 + 1))) |
52 | 51 | 3ad2ant3 1133 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ ∧ 𝑛 = (𝑚 + 1)) → (𝑅↑𝑟𝑛) = (𝑅↑𝑟(𝑚 + 1))) |
53 | | relexpsucnnr 14664 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) → (𝑅↑𝑟(𝑚 + 1)) = ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
54 | 53 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) → ((𝑅↑𝑟𝑚) ∘ 𝑅) = (𝑅↑𝑟(𝑚 + 1))) |
55 | | relexpsucnnr 14664 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑛 − 1) ∈ ℕ) → (𝑅↑𝑟((𝑛 − 1) + 1)) = ((𝑅↑𝑟(𝑛 − 1)) ∘ 𝑅)) |
56 | 40, 55 | sylan2 592 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑛 ∈ (ℤ≥‘2))
→ (𝑅↑𝑟((𝑛 − 1) + 1)) = ((𝑅↑𝑟(𝑛 − 1)) ∘ 𝑅)) |
57 | | eluzelcn 12523 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(ℤ≥‘2) → 𝑛 ∈ ℂ) |
58 | | npcan1 11330 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℂ → ((𝑛 − 1) + 1) = 𝑛) |
59 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (((𝑛 − 1) + 1) = 𝑛 → (𝑅↑𝑟((𝑛 − 1) + 1)) = (𝑅↑𝑟𝑛)) |
60 | 57, 58, 59 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝑛 ∈
(ℤ≥‘2) → (𝑅↑𝑟((𝑛 − 1) + 1)) = (𝑅↑𝑟𝑛)) |
61 | 60 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘2) → ((𝑅↑𝑟((𝑛 − 1) + 1)) = ((𝑅↑𝑟(𝑛 − 1)) ∘ 𝑅) ↔ (𝑅↑𝑟𝑛) = ((𝑅↑𝑟(𝑛 − 1)) ∘ 𝑅))) |
62 | 61 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑛 ∈ (ℤ≥‘2))
→ ((𝑅↑𝑟((𝑛 − 1) + 1)) = ((𝑅↑𝑟(𝑛 − 1)) ∘ 𝑅) ↔ (𝑅↑𝑟𝑛) = ((𝑅↑𝑟(𝑛 − 1)) ∘ 𝑅))) |
63 | 56, 62 | mpbid 231 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑛 ∈ (ℤ≥‘2))
→ (𝑅↑𝑟𝑛) = ((𝑅↑𝑟(𝑛 − 1)) ∘ 𝑅)) |
64 | 41, 47, 50, 52, 54, 63 | cbviuneq12dv 41159 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → ∪
𝑚 ∈ ℕ ((𝑅↑𝑟𝑚) ∘ 𝑅) = ∪
𝑛 ∈
(ℤ≥‘2)(𝑅↑𝑟𝑛)) |
65 | 39, 64 | syl5eq 2791 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (∪
𝑚 ∈ ℕ (𝑅↑𝑟𝑚) ∘ 𝑅) = ∪
𝑛 ∈
(ℤ≥‘2)(𝑅↑𝑟𝑛)) |
66 | 38, 65 | eqtrd 2778 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → ((t+‘𝑅) ∘ 𝑅) = ∪
𝑛 ∈
(ℤ≥‘2)(𝑅↑𝑟𝑛)) |
67 | 66 | eqcomd 2744 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → ∪
𝑛 ∈
(ℤ≥‘2)(𝑅↑𝑟𝑛) = ((t+‘𝑅) ∘ 𝑅)) |
68 | 30, 67 | uneq12d 4094 |
. . 3
⊢ (𝑅 ∈ 𝑉 → ((𝑅↑𝑟1) ∪ ∪ 𝑛 ∈
(ℤ≥‘2)(𝑅↑𝑟𝑛)) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅))) |
69 | 29, 68 | syl5eq 2791 |
. 2
⊢ (𝑅 ∈ 𝑉 → ∪
𝑛 ∈ ℕ (𝑅↑𝑟𝑛) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅))) |
70 | 9, 69 | eqtrd 2778 |
1
⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅))) |