Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclfvdecomr Structured version   Visualization version   GIF version

Theorem trclfvdecomr 38514
Description: The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020.)
Assertion
Ref Expression
trclfvdecomr (𝑅𝑉 → (t+‘𝑅) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅)))

Proof of Theorem trclfvdecomr
Dummy variables 𝑚 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3406 . . 3 (𝑅𝑉𝑅 ∈ V)
2 oveq1 6877 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
32iuneq2d 4739 . . . 4 (𝑟 = 𝑅 𝑛 ∈ ℕ (𝑟𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
4 dftrcl3 38506 . . . 4 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
5 nnex 11307 . . . . 5 ℕ ∈ V
6 ovex 6902 . . . . 5 (𝑅𝑟𝑛) ∈ V
75, 6iunex 7373 . . . 4 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
83, 4, 7fvmpt 6499 . . 3 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
91, 8syl 17 . 2 (𝑅𝑉 → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
10 nnuz 11937 . . . . . 6 ℕ = (ℤ‘1)
11 2eluzge1 11948 . . . . . . 7 2 ∈ (ℤ‘1)
12 uzsplit 12631 . . . . . . 7 (2 ∈ (ℤ‘1) → (ℤ‘1) = ((1...(2 − 1)) ∪ (ℤ‘2)))
1311, 12ax-mp 5 . . . . . 6 (ℤ‘1) = ((1...(2 − 1)) ∪ (ℤ‘2))
14 2m1e1 11414 . . . . . . . . 9 (2 − 1) = 1
1514oveq2i 6881 . . . . . . . 8 (1...(2 − 1)) = (1...1)
16 1z 11669 . . . . . . . . 9 1 ∈ ℤ
17 fzsn 12602 . . . . . . . . 9 (1 ∈ ℤ → (1...1) = {1})
1816, 17ax-mp 5 . . . . . . . 8 (1...1) = {1}
1915, 18eqtri 2828 . . . . . . 7 (1...(2 − 1)) = {1}
2019uneq1i 3962 . . . . . 6 ((1...(2 − 1)) ∪ (ℤ‘2)) = ({1} ∪ (ℤ‘2))
2110, 13, 203eqtri 2832 . . . . 5 ℕ = ({1} ∪ (ℤ‘2))
22 iuneq1 4726 . . . . 5 (ℕ = ({1} ∪ (ℤ‘2)) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ({1} ∪ (ℤ‘2))(𝑅𝑟𝑛))
2321, 22ax-mp 5 . . . 4 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ({1} ∪ (ℤ‘2))(𝑅𝑟𝑛)
24 iunxun 4797 . . . 4 𝑛 ∈ ({1} ∪ (ℤ‘2))(𝑅𝑟𝑛) = ( 𝑛 ∈ {1} (𝑅𝑟𝑛) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
25 1ex 10317 . . . . . 6 1 ∈ V
26 oveq2 6878 . . . . . 6 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
2725, 26iunxsn 4795 . . . . 5 𝑛 ∈ {1} (𝑅𝑟𝑛) = (𝑅𝑟1)
2827uneq1i 3962 . . . 4 ( 𝑛 ∈ {1} (𝑅𝑟𝑛) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛)) = ((𝑅𝑟1) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
2923, 24, 283eqtri 2832 . . 3 𝑛 ∈ ℕ (𝑅𝑟𝑛) = ((𝑅𝑟1) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
30 relexp1g 13985 . . . 4 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
31 oveq1 6877 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑟𝑟𝑚) = (𝑅𝑟𝑚))
3231iuneq2d 4739 . . . . . . . . 9 (𝑟 = 𝑅 𝑚 ∈ ℕ (𝑟𝑟𝑚) = 𝑚 ∈ ℕ (𝑅𝑟𝑚))
33 dftrcl3 38506 . . . . . . . . 9 t+ = (𝑟 ∈ V ↦ 𝑚 ∈ ℕ (𝑟𝑟𝑚))
34 ovex 6902 . . . . . . . . . 10 (𝑅𝑟𝑚) ∈ V
355, 34iunex 7373 . . . . . . . . 9 𝑚 ∈ ℕ (𝑅𝑟𝑚) ∈ V
3632, 33, 35fvmpt 6499 . . . . . . . 8 (𝑅 ∈ V → (t+‘𝑅) = 𝑚 ∈ ℕ (𝑅𝑟𝑚))
371, 36syl 17 . . . . . . 7 (𝑅𝑉 → (t+‘𝑅) = 𝑚 ∈ ℕ (𝑅𝑟𝑚))
3837coeq1d 5485 . . . . . 6 (𝑅𝑉 → ((t+‘𝑅) ∘ 𝑅) = ( 𝑚 ∈ ℕ (𝑅𝑟𝑚) ∘ 𝑅))
39 coiun1 38438 . . . . . . 7 ( 𝑚 ∈ ℕ (𝑅𝑟𝑚) ∘ 𝑅) = 𝑚 ∈ ℕ ((𝑅𝑟𝑚) ∘ 𝑅)
40 uz2m1nn 11978 . . . . . . . . 9 (𝑛 ∈ (ℤ‘2) → (𝑛 − 1) ∈ ℕ)
4140adantl 469 . . . . . . . 8 ((𝑅𝑉𝑛 ∈ (ℤ‘2)) → (𝑛 − 1) ∈ ℕ)
42 eluzp1p1 11926 . . . . . . . . . . 11 (𝑚 ∈ (ℤ‘1) → (𝑚 + 1) ∈ (ℤ‘(1 + 1)))
4342, 10eleq2s 2903 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ (ℤ‘(1 + 1)))
44 1p1e2 11413 . . . . . . . . . . 11 (1 + 1) = 2
4544fveq2i 6407 . . . . . . . . . 10 (ℤ‘(1 + 1)) = (ℤ‘2)
4643, 45syl6eleq 2895 . . . . . . . . 9 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ (ℤ‘2))
4746adantl 469 . . . . . . . 8 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑚 + 1) ∈ (ℤ‘2))
48 oveq2 6878 . . . . . . . . . 10 (𝑚 = (𝑛 − 1) → (𝑅𝑟𝑚) = (𝑅𝑟(𝑛 − 1)))
4948coeq1d 5485 . . . . . . . . 9 (𝑚 = (𝑛 − 1) → ((𝑅𝑟𝑚) ∘ 𝑅) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
50493ad2ant3 1158 . . . . . . . 8 ((𝑅𝑉𝑛 ∈ (ℤ‘2) ∧ 𝑚 = (𝑛 − 1)) → ((𝑅𝑟𝑚) ∘ 𝑅) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
51 oveq2 6878 . . . . . . . . 9 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
52513ad2ant3 1158 . . . . . . . 8 ((𝑅𝑉𝑚 ∈ ℕ ∧ 𝑛 = (𝑚 + 1)) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
53 relexpsucnnr 13984 . . . . . . . . 9 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
5453eqcomd 2812 . . . . . . . 8 ((𝑅𝑉𝑚 ∈ ℕ) → ((𝑅𝑟𝑚) ∘ 𝑅) = (𝑅𝑟(𝑚 + 1)))
55 relexpsucnnr 13984 . . . . . . . . . 10 ((𝑅𝑉 ∧ (𝑛 − 1) ∈ ℕ) → (𝑅𝑟((𝑛 − 1) + 1)) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
5640, 55sylan2 582 . . . . . . . . 9 ((𝑅𝑉𝑛 ∈ (ℤ‘2)) → (𝑅𝑟((𝑛 − 1) + 1)) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
57 eluzelcn 11912 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℂ)
58 npcan1 10736 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → ((𝑛 − 1) + 1) = 𝑛)
59 oveq2 6878 . . . . . . . . . . . 12 (((𝑛 − 1) + 1) = 𝑛 → (𝑅𝑟((𝑛 − 1) + 1)) = (𝑅𝑟𝑛))
6057, 58, 593syl 18 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘2) → (𝑅𝑟((𝑛 − 1) + 1)) = (𝑅𝑟𝑛))
6160eqeq1d 2808 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘2) → ((𝑅𝑟((𝑛 − 1) + 1)) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅) ↔ (𝑅𝑟𝑛) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅)))
6261adantl 469 . . . . . . . . 9 ((𝑅𝑉𝑛 ∈ (ℤ‘2)) → ((𝑅𝑟((𝑛 − 1) + 1)) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅) ↔ (𝑅𝑟𝑛) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅)))
6356, 62mpbid 223 . . . . . . . 8 ((𝑅𝑉𝑛 ∈ (ℤ‘2)) → (𝑅𝑟𝑛) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
6441, 47, 50, 52, 54, 63cbviuneq12dv 38448 . . . . . . 7 (𝑅𝑉 𝑚 ∈ ℕ ((𝑅𝑟𝑚) ∘ 𝑅) = 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
6539, 64syl5eq 2852 . . . . . 6 (𝑅𝑉 → ( 𝑚 ∈ ℕ (𝑅𝑟𝑚) ∘ 𝑅) = 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
6638, 65eqtrd 2840 . . . . 5 (𝑅𝑉 → ((t+‘𝑅) ∘ 𝑅) = 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
6766eqcomd 2812 . . . 4 (𝑅𝑉 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛) = ((t+‘𝑅) ∘ 𝑅))
6830, 67uneq12d 3967 . . 3 (𝑅𝑉 → ((𝑅𝑟1) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛)) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅)))
6929, 68syl5eq 2852 . 2 (𝑅𝑉 𝑛 ∈ ℕ (𝑅𝑟𝑛) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅)))
709, 69eqtrd 2840 1 (𝑅𝑉 → (t+‘𝑅) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  Vcvv 3391  cun 3767  {csn 4370   ciun 4712  ccom 5315  cfv 6097  (class class class)co 6870  cc 10215  1c1 10218   + caddc 10220  cmin 10547  cn 11301  2c2 11352  cz 11639  cuz 11900  ...cfz 12545  t+ctcl 13945  𝑟crelexp 13979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-1st 7394  df-2nd 7395  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-er 7975  df-en 8189  df-dom 8190  df-sdom 8191  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-nn 11302  df-2 11360  df-n0 11556  df-z 11640  df-uz 11901  df-fz 12546  df-seq 13021  df-trcl 13947  df-relexp 13980
This theorem is referenced by:  trclfvdecoml  38515  dmtrclfvRP  38516  frege124d  38547  frege131d  38550
  Copyright terms: Public domain W3C validator