Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclfvdecomr Structured version   Visualization version   GIF version

Theorem trclfvdecomr 40426
Description: The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020.)
Assertion
Ref Expression
trclfvdecomr (𝑅𝑉 → (t+‘𝑅) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅)))

Proof of Theorem trclfvdecomr
Dummy variables 𝑚 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3462 . . 3 (𝑅𝑉𝑅 ∈ V)
2 oveq1 7146 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
32iuneq2d 4913 . . . 4 (𝑟 = 𝑅 𝑛 ∈ ℕ (𝑟𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
4 dftrcl3 40418 . . . 4 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
5 nnex 11635 . . . . 5 ℕ ∈ V
6 ovex 7172 . . . . 5 (𝑅𝑟𝑛) ∈ V
75, 6iunex 7655 . . . 4 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
83, 4, 7fvmpt 6749 . . 3 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
91, 8syl 17 . 2 (𝑅𝑉 → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
10 nnuz 12273 . . . . . 6 ℕ = (ℤ‘1)
11 2eluzge1 12286 . . . . . . 7 2 ∈ (ℤ‘1)
12 uzsplit 12978 . . . . . . 7 (2 ∈ (ℤ‘1) → (ℤ‘1) = ((1...(2 − 1)) ∪ (ℤ‘2)))
1311, 12ax-mp 5 . . . . . 6 (ℤ‘1) = ((1...(2 − 1)) ∪ (ℤ‘2))
14 2m1e1 11755 . . . . . . . . 9 (2 − 1) = 1
1514oveq2i 7150 . . . . . . . 8 (1...(2 − 1)) = (1...1)
16 1z 12004 . . . . . . . . 9 1 ∈ ℤ
17 fzsn 12948 . . . . . . . . 9 (1 ∈ ℤ → (1...1) = {1})
1816, 17ax-mp 5 . . . . . . . 8 (1...1) = {1}
1915, 18eqtri 2824 . . . . . . 7 (1...(2 − 1)) = {1}
2019uneq1i 4089 . . . . . 6 ((1...(2 − 1)) ∪ (ℤ‘2)) = ({1} ∪ (ℤ‘2))
2110, 13, 203eqtri 2828 . . . . 5 ℕ = ({1} ∪ (ℤ‘2))
22 iuneq1 4900 . . . . 5 (ℕ = ({1} ∪ (ℤ‘2)) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ({1} ∪ (ℤ‘2))(𝑅𝑟𝑛))
2321, 22ax-mp 5 . . . 4 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ({1} ∪ (ℤ‘2))(𝑅𝑟𝑛)
24 iunxun 4982 . . . 4 𝑛 ∈ ({1} ∪ (ℤ‘2))(𝑅𝑟𝑛) = ( 𝑛 ∈ {1} (𝑅𝑟𝑛) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
25 1ex 10630 . . . . . 6 1 ∈ V
26 oveq2 7147 . . . . . 6 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
2725, 26iunxsn 4979 . . . . 5 𝑛 ∈ {1} (𝑅𝑟𝑛) = (𝑅𝑟1)
2827uneq1i 4089 . . . 4 ( 𝑛 ∈ {1} (𝑅𝑟𝑛) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛)) = ((𝑅𝑟1) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
2923, 24, 283eqtri 2828 . . 3 𝑛 ∈ ℕ (𝑅𝑟𝑛) = ((𝑅𝑟1) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
30 relexp1g 14381 . . . 4 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
31 oveq1 7146 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑟𝑟𝑚) = (𝑅𝑟𝑚))
3231iuneq2d 4913 . . . . . . . . 9 (𝑟 = 𝑅 𝑚 ∈ ℕ (𝑟𝑟𝑚) = 𝑚 ∈ ℕ (𝑅𝑟𝑚))
33 dftrcl3 40418 . . . . . . . . 9 t+ = (𝑟 ∈ V ↦ 𝑚 ∈ ℕ (𝑟𝑟𝑚))
34 ovex 7172 . . . . . . . . . 10 (𝑅𝑟𝑚) ∈ V
355, 34iunex 7655 . . . . . . . . 9 𝑚 ∈ ℕ (𝑅𝑟𝑚) ∈ V
3632, 33, 35fvmpt 6749 . . . . . . . 8 (𝑅 ∈ V → (t+‘𝑅) = 𝑚 ∈ ℕ (𝑅𝑟𝑚))
371, 36syl 17 . . . . . . 7 (𝑅𝑉 → (t+‘𝑅) = 𝑚 ∈ ℕ (𝑅𝑟𝑚))
3837coeq1d 5700 . . . . . 6 (𝑅𝑉 → ((t+‘𝑅) ∘ 𝑅) = ( 𝑚 ∈ ℕ (𝑅𝑟𝑚) ∘ 𝑅))
39 coiun1 40350 . . . . . . 7 ( 𝑚 ∈ ℕ (𝑅𝑟𝑚) ∘ 𝑅) = 𝑚 ∈ ℕ ((𝑅𝑟𝑚) ∘ 𝑅)
40 uz2m1nn 12315 . . . . . . . . 9 (𝑛 ∈ (ℤ‘2) → (𝑛 − 1) ∈ ℕ)
4140adantl 485 . . . . . . . 8 ((𝑅𝑉𝑛 ∈ (ℤ‘2)) → (𝑛 − 1) ∈ ℕ)
42 eluzp1p1 12262 . . . . . . . . . . 11 (𝑚 ∈ (ℤ‘1) → (𝑚 + 1) ∈ (ℤ‘(1 + 1)))
4342, 10eleq2s 2911 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ (ℤ‘(1 + 1)))
44 1p1e2 11754 . . . . . . . . . . 11 (1 + 1) = 2
4544fveq2i 6652 . . . . . . . . . 10 (ℤ‘(1 + 1)) = (ℤ‘2)
4643, 45eleqtrdi 2903 . . . . . . . . 9 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ (ℤ‘2))
4746adantl 485 . . . . . . . 8 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑚 + 1) ∈ (ℤ‘2))
48 oveq2 7147 . . . . . . . . . 10 (𝑚 = (𝑛 − 1) → (𝑅𝑟𝑚) = (𝑅𝑟(𝑛 − 1)))
4948coeq1d 5700 . . . . . . . . 9 (𝑚 = (𝑛 − 1) → ((𝑅𝑟𝑚) ∘ 𝑅) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
50493ad2ant3 1132 . . . . . . . 8 ((𝑅𝑉𝑛 ∈ (ℤ‘2) ∧ 𝑚 = (𝑛 − 1)) → ((𝑅𝑟𝑚) ∘ 𝑅) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
51 oveq2 7147 . . . . . . . . 9 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
52513ad2ant3 1132 . . . . . . . 8 ((𝑅𝑉𝑚 ∈ ℕ ∧ 𝑛 = (𝑚 + 1)) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
53 relexpsucnnr 14380 . . . . . . . . 9 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
5453eqcomd 2807 . . . . . . . 8 ((𝑅𝑉𝑚 ∈ ℕ) → ((𝑅𝑟𝑚) ∘ 𝑅) = (𝑅𝑟(𝑚 + 1)))
55 relexpsucnnr 14380 . . . . . . . . . 10 ((𝑅𝑉 ∧ (𝑛 − 1) ∈ ℕ) → (𝑅𝑟((𝑛 − 1) + 1)) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
5640, 55sylan2 595 . . . . . . . . 9 ((𝑅𝑉𝑛 ∈ (ℤ‘2)) → (𝑅𝑟((𝑛 − 1) + 1)) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
57 eluzelcn 12247 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℂ)
58 npcan1 11058 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → ((𝑛 − 1) + 1) = 𝑛)
59 oveq2 7147 . . . . . . . . . . . 12 (((𝑛 − 1) + 1) = 𝑛 → (𝑅𝑟((𝑛 − 1) + 1)) = (𝑅𝑟𝑛))
6057, 58, 593syl 18 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘2) → (𝑅𝑟((𝑛 − 1) + 1)) = (𝑅𝑟𝑛))
6160eqeq1d 2803 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘2) → ((𝑅𝑟((𝑛 − 1) + 1)) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅) ↔ (𝑅𝑟𝑛) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅)))
6261adantl 485 . . . . . . . . 9 ((𝑅𝑉𝑛 ∈ (ℤ‘2)) → ((𝑅𝑟((𝑛 − 1) + 1)) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅) ↔ (𝑅𝑟𝑛) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅)))
6356, 62mpbid 235 . . . . . . . 8 ((𝑅𝑉𝑛 ∈ (ℤ‘2)) → (𝑅𝑟𝑛) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
6441, 47, 50, 52, 54, 63cbviuneq12dv 40360 . . . . . . 7 (𝑅𝑉 𝑚 ∈ ℕ ((𝑅𝑟𝑚) ∘ 𝑅) = 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
6539, 64syl5eq 2848 . . . . . 6 (𝑅𝑉 → ( 𝑚 ∈ ℕ (𝑅𝑟𝑚) ∘ 𝑅) = 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
6638, 65eqtrd 2836 . . . . 5 (𝑅𝑉 → ((t+‘𝑅) ∘ 𝑅) = 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
6766eqcomd 2807 . . . 4 (𝑅𝑉 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛) = ((t+‘𝑅) ∘ 𝑅))
6830, 67uneq12d 4094 . . 3 (𝑅𝑉 → ((𝑅𝑟1) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛)) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅)))
6929, 68syl5eq 2848 . 2 (𝑅𝑉 𝑛 ∈ ℕ (𝑅𝑟𝑛) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅)))
709, 69eqtrd 2836 1 (𝑅𝑉 → (t+‘𝑅) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  Vcvv 3444  cun 3882  {csn 4528   ciun 4884  ccom 5527  cfv 6328  (class class class)co 7139  cc 10528  1c1 10531   + caddc 10533  cmin 10863  cn 11629  2c2 11684  cz 11973  cuz 12235  ...cfz 12889  t+ctcl 14340  𝑟crelexp 14374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-seq 13369  df-trcl 14342  df-relexp 14375
This theorem is referenced by:  trclfvdecoml  40427  dmtrclfvRP  40428  frege124d  40459  frege131d  40462
  Copyright terms: Public domain W3C validator