Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclfvdecomr Structured version   Visualization version   GIF version

Theorem trclfvdecomr 41225
Description: The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020.)
Assertion
Ref Expression
trclfvdecomr (𝑅𝑉 → (t+‘𝑅) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅)))

Proof of Theorem trclfvdecomr
Dummy variables 𝑚 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3440 . . 3 (𝑅𝑉𝑅 ∈ V)
2 oveq1 7262 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
32iuneq2d 4950 . . . 4 (𝑟 = 𝑅 𝑛 ∈ ℕ (𝑟𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
4 dftrcl3 41217 . . . 4 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
5 nnex 11909 . . . . 5 ℕ ∈ V
6 ovex 7288 . . . . 5 (𝑅𝑟𝑛) ∈ V
75, 6iunex 7784 . . . 4 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
83, 4, 7fvmpt 6857 . . 3 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
91, 8syl 17 . 2 (𝑅𝑉 → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
10 nnuz 12550 . . . . . 6 ℕ = (ℤ‘1)
11 2eluzge1 12563 . . . . . . 7 2 ∈ (ℤ‘1)
12 uzsplit 13257 . . . . . . 7 (2 ∈ (ℤ‘1) → (ℤ‘1) = ((1...(2 − 1)) ∪ (ℤ‘2)))
1311, 12ax-mp 5 . . . . . 6 (ℤ‘1) = ((1...(2 − 1)) ∪ (ℤ‘2))
14 2m1e1 12029 . . . . . . . . 9 (2 − 1) = 1
1514oveq2i 7266 . . . . . . . 8 (1...(2 − 1)) = (1...1)
16 1z 12280 . . . . . . . . 9 1 ∈ ℤ
17 fzsn 13227 . . . . . . . . 9 (1 ∈ ℤ → (1...1) = {1})
1816, 17ax-mp 5 . . . . . . . 8 (1...1) = {1}
1915, 18eqtri 2766 . . . . . . 7 (1...(2 − 1)) = {1}
2019uneq1i 4089 . . . . . 6 ((1...(2 − 1)) ∪ (ℤ‘2)) = ({1} ∪ (ℤ‘2))
2110, 13, 203eqtri 2770 . . . . 5 ℕ = ({1} ∪ (ℤ‘2))
22 iuneq1 4937 . . . . 5 (ℕ = ({1} ∪ (ℤ‘2)) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ({1} ∪ (ℤ‘2))(𝑅𝑟𝑛))
2321, 22ax-mp 5 . . . 4 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ({1} ∪ (ℤ‘2))(𝑅𝑟𝑛)
24 iunxun 5019 . . . 4 𝑛 ∈ ({1} ∪ (ℤ‘2))(𝑅𝑟𝑛) = ( 𝑛 ∈ {1} (𝑅𝑟𝑛) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
25 1ex 10902 . . . . . 6 1 ∈ V
26 oveq2 7263 . . . . . 6 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
2725, 26iunxsn 5016 . . . . 5 𝑛 ∈ {1} (𝑅𝑟𝑛) = (𝑅𝑟1)
2827uneq1i 4089 . . . 4 ( 𝑛 ∈ {1} (𝑅𝑟𝑛) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛)) = ((𝑅𝑟1) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
2923, 24, 283eqtri 2770 . . 3 𝑛 ∈ ℕ (𝑅𝑟𝑛) = ((𝑅𝑟1) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
30 relexp1g 14665 . . . 4 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
31 oveq1 7262 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑟𝑟𝑚) = (𝑅𝑟𝑚))
3231iuneq2d 4950 . . . . . . . . 9 (𝑟 = 𝑅 𝑚 ∈ ℕ (𝑟𝑟𝑚) = 𝑚 ∈ ℕ (𝑅𝑟𝑚))
33 dftrcl3 41217 . . . . . . . . 9 t+ = (𝑟 ∈ V ↦ 𝑚 ∈ ℕ (𝑟𝑟𝑚))
34 ovex 7288 . . . . . . . . . 10 (𝑅𝑟𝑚) ∈ V
355, 34iunex 7784 . . . . . . . . 9 𝑚 ∈ ℕ (𝑅𝑟𝑚) ∈ V
3632, 33, 35fvmpt 6857 . . . . . . . 8 (𝑅 ∈ V → (t+‘𝑅) = 𝑚 ∈ ℕ (𝑅𝑟𝑚))
371, 36syl 17 . . . . . . 7 (𝑅𝑉 → (t+‘𝑅) = 𝑚 ∈ ℕ (𝑅𝑟𝑚))
3837coeq1d 5759 . . . . . 6 (𝑅𝑉 → ((t+‘𝑅) ∘ 𝑅) = ( 𝑚 ∈ ℕ (𝑅𝑟𝑚) ∘ 𝑅))
39 coiun1 41149 . . . . . . 7 ( 𝑚 ∈ ℕ (𝑅𝑟𝑚) ∘ 𝑅) = 𝑚 ∈ ℕ ((𝑅𝑟𝑚) ∘ 𝑅)
40 uz2m1nn 12592 . . . . . . . . 9 (𝑛 ∈ (ℤ‘2) → (𝑛 − 1) ∈ ℕ)
4140adantl 481 . . . . . . . 8 ((𝑅𝑉𝑛 ∈ (ℤ‘2)) → (𝑛 − 1) ∈ ℕ)
42 eluzp1p1 12539 . . . . . . . . . . 11 (𝑚 ∈ (ℤ‘1) → (𝑚 + 1) ∈ (ℤ‘(1 + 1)))
4342, 10eleq2s 2857 . . . . . . . . . 10 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ (ℤ‘(1 + 1)))
44 1p1e2 12028 . . . . . . . . . . 11 (1 + 1) = 2
4544fveq2i 6759 . . . . . . . . . 10 (ℤ‘(1 + 1)) = (ℤ‘2)
4643, 45eleqtrdi 2849 . . . . . . . . 9 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ (ℤ‘2))
4746adantl 481 . . . . . . . 8 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑚 + 1) ∈ (ℤ‘2))
48 oveq2 7263 . . . . . . . . . 10 (𝑚 = (𝑛 − 1) → (𝑅𝑟𝑚) = (𝑅𝑟(𝑛 − 1)))
4948coeq1d 5759 . . . . . . . . 9 (𝑚 = (𝑛 − 1) → ((𝑅𝑟𝑚) ∘ 𝑅) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
50493ad2ant3 1133 . . . . . . . 8 ((𝑅𝑉𝑛 ∈ (ℤ‘2) ∧ 𝑚 = (𝑛 − 1)) → ((𝑅𝑟𝑚) ∘ 𝑅) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
51 oveq2 7263 . . . . . . . . 9 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
52513ad2ant3 1133 . . . . . . . 8 ((𝑅𝑉𝑚 ∈ ℕ ∧ 𝑛 = (𝑚 + 1)) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
53 relexpsucnnr 14664 . . . . . . . . 9 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
5453eqcomd 2744 . . . . . . . 8 ((𝑅𝑉𝑚 ∈ ℕ) → ((𝑅𝑟𝑚) ∘ 𝑅) = (𝑅𝑟(𝑚 + 1)))
55 relexpsucnnr 14664 . . . . . . . . . 10 ((𝑅𝑉 ∧ (𝑛 − 1) ∈ ℕ) → (𝑅𝑟((𝑛 − 1) + 1)) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
5640, 55sylan2 592 . . . . . . . . 9 ((𝑅𝑉𝑛 ∈ (ℤ‘2)) → (𝑅𝑟((𝑛 − 1) + 1)) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
57 eluzelcn 12523 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℂ)
58 npcan1 11330 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → ((𝑛 − 1) + 1) = 𝑛)
59 oveq2 7263 . . . . . . . . . . . 12 (((𝑛 − 1) + 1) = 𝑛 → (𝑅𝑟((𝑛 − 1) + 1)) = (𝑅𝑟𝑛))
6057, 58, 593syl 18 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘2) → (𝑅𝑟((𝑛 − 1) + 1)) = (𝑅𝑟𝑛))
6160eqeq1d 2740 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘2) → ((𝑅𝑟((𝑛 − 1) + 1)) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅) ↔ (𝑅𝑟𝑛) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅)))
6261adantl 481 . . . . . . . . 9 ((𝑅𝑉𝑛 ∈ (ℤ‘2)) → ((𝑅𝑟((𝑛 − 1) + 1)) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅) ↔ (𝑅𝑟𝑛) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅)))
6356, 62mpbid 231 . . . . . . . 8 ((𝑅𝑉𝑛 ∈ (ℤ‘2)) → (𝑅𝑟𝑛) = ((𝑅𝑟(𝑛 − 1)) ∘ 𝑅))
6441, 47, 50, 52, 54, 63cbviuneq12dv 41159 . . . . . . 7 (𝑅𝑉 𝑚 ∈ ℕ ((𝑅𝑟𝑚) ∘ 𝑅) = 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
6539, 64syl5eq 2791 . . . . . 6 (𝑅𝑉 → ( 𝑚 ∈ ℕ (𝑅𝑟𝑚) ∘ 𝑅) = 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
6638, 65eqtrd 2778 . . . . 5 (𝑅𝑉 → ((t+‘𝑅) ∘ 𝑅) = 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛))
6766eqcomd 2744 . . . 4 (𝑅𝑉 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛) = ((t+‘𝑅) ∘ 𝑅))
6830, 67uneq12d 4094 . . 3 (𝑅𝑉 → ((𝑅𝑟1) ∪ 𝑛 ∈ (ℤ‘2)(𝑅𝑟𝑛)) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅)))
6929, 68syl5eq 2791 . 2 (𝑅𝑉 𝑛 ∈ ℕ (𝑅𝑟𝑛) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅)))
709, 69eqtrd 2778 1 (𝑅𝑉 → (t+‘𝑅) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  {csn 4558   ciun 4921  ccom 5584  cfv 6418  (class class class)co 7255  cc 10800  1c1 10803   + caddc 10805  cmin 11135  cn 11903  2c2 11958  cz 12249  cuz 12511  ...cfz 13168  t+ctcl 14624  𝑟crelexp 14658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-trcl 14626  df-relexp 14659
This theorem is referenced by:  trclfvdecoml  41226  dmtrclfvRP  41227  frege124d  41258  frege131d  41261
  Copyright terms: Public domain W3C validator