![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege109d | Structured version Visualization version GIF version |
Description: If 𝐴 contains all elements of 𝑈 and all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 109 of [Frege1879] p. 74. Compare with frege109 42482. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege109d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
frege109d.a | ⊢ (𝜑 → 𝐴 = (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) |
Ref | Expression |
---|---|
frege109d | ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege109d.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | trclfvlb 14936 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅)) | |
3 | imass1 6088 | . . . . 5 ⊢ (𝑅 ⊆ (t+‘𝑅) → (𝑅 “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) |
5 | coss1 5846 | . . . . . . 7 ⊢ (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) | |
6 | 1, 2, 5 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) |
7 | trclfvcotrg 14944 | . . . . . 6 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) | |
8 | 6, 7 | sstrdi 3989 | . . . . 5 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
9 | imass1 6088 | . . . . 5 ⊢ ((𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) |
11 | 4, 10 | unssd 4181 | . . 3 ⊢ (𝜑 → ((𝑅 “ 𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) ⊆ ((t+‘𝑅) “ 𝑈)) |
12 | ssun2 4168 | . . 3 ⊢ ((t+‘𝑅) “ 𝑈) ⊆ (𝑈 ∪ ((t+‘𝑅) “ 𝑈)) | |
13 | 11, 12 | sstrdi 3989 | . 2 ⊢ (𝜑 → ((𝑅 “ 𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) ⊆ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) |
14 | frege109d.a | . . . 4 ⊢ (𝜑 → 𝐴 = (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) | |
15 | 14 | imaeq2d 6048 | . . 3 ⊢ (𝜑 → (𝑅 “ 𝐴) = (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈)))) |
16 | imaundi 6137 | . . . 4 ⊢ (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) = ((𝑅 “ 𝑈) ∪ (𝑅 “ ((t+‘𝑅) “ 𝑈))) | |
17 | imaco 6238 | . . . . . 6 ⊢ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) = (𝑅 “ ((t+‘𝑅) “ 𝑈)) | |
18 | 17 | eqcomi 2740 | . . . . 5 ⊢ (𝑅 “ ((t+‘𝑅) “ 𝑈)) = ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) |
19 | 18 | uneq2i 4155 | . . . 4 ⊢ ((𝑅 “ 𝑈) ∪ (𝑅 “ ((t+‘𝑅) “ 𝑈))) = ((𝑅 “ 𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) |
20 | 16, 19 | eqtri 2759 | . . 3 ⊢ (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) = ((𝑅 “ 𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) |
21 | 15, 20 | eqtrdi 2787 | . 2 ⊢ (𝜑 → (𝑅 “ 𝐴) = ((𝑅 “ 𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈))) |
22 | 13, 21, 14 | 3sstr4d 4024 | 1 ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3472 ∪ cun 3941 ⊆ wss 3943 “ cima 5671 ∘ ccom 5672 ‘cfv 6531 t+ctcl 14913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5291 ax-nul 5298 ax-pow 5355 ax-pr 5419 ax-un 7707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3474 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4943 df-br 5141 df-opab 5203 df-mpt 5224 df-id 5566 df-xp 5674 df-rel 5675 df-cnv 5676 df-co 5677 df-dm 5678 df-rn 5679 df-res 5680 df-ima 5681 df-iota 6483 df-fun 6533 df-fv 6539 df-trcl 14915 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |