Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege109d Structured version   Visualization version   GIF version

Theorem frege109d 43728
Description: If 𝐴 contains all elements of 𝑈 and all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 109 of [Frege1879] p. 74. Compare with frege109 43943. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege109d.r (𝜑𝑅 ∈ V)
frege109d.a (𝜑𝐴 = (𝑈 ∪ ((t+‘𝑅) “ 𝑈)))
Assertion
Ref Expression
frege109d (𝜑 → (𝑅𝐴) ⊆ 𝐴)

Proof of Theorem frege109d
StepHypRef Expression
1 frege109d.r . . . . 5 (𝜑𝑅 ∈ V)
2 trclfvlb 15025 . . . . 5 (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅))
3 imass1 6088 . . . . 5 (𝑅 ⊆ (t+‘𝑅) → (𝑅𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
41, 2, 33syl 18 . . . 4 (𝜑 → (𝑅𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
5 coss1 5835 . . . . . . 7 (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
61, 2, 53syl 18 . . . . . 6 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
7 trclfvcotrg 15033 . . . . . 6 ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)
86, 7sstrdi 3971 . . . . 5 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
9 imass1 6088 . . . . 5 ((𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
108, 9syl 17 . . . 4 (𝜑 → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
114, 10unssd 4167 . . 3 (𝜑 → ((𝑅𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) ⊆ ((t+‘𝑅) “ 𝑈))
12 ssun2 4154 . . 3 ((t+‘𝑅) “ 𝑈) ⊆ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))
1311, 12sstrdi 3971 . 2 (𝜑 → ((𝑅𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) ⊆ (𝑈 ∪ ((t+‘𝑅) “ 𝑈)))
14 frege109d.a . . . 4 (𝜑𝐴 = (𝑈 ∪ ((t+‘𝑅) “ 𝑈)))
1514imaeq2d 6047 . . 3 (𝜑 → (𝑅𝐴) = (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))))
16 imaundi 6138 . . . 4 (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) = ((𝑅𝑈) ∪ (𝑅 “ ((t+‘𝑅) “ 𝑈)))
17 imaco 6240 . . . . . 6 ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) = (𝑅 “ ((t+‘𝑅) “ 𝑈))
1817eqcomi 2744 . . . . 5 (𝑅 “ ((t+‘𝑅) “ 𝑈)) = ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)
1918uneq2i 4140 . . . 4 ((𝑅𝑈) ∪ (𝑅 “ ((t+‘𝑅) “ 𝑈))) = ((𝑅𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈))
2016, 19eqtri 2758 . . 3 (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) = ((𝑅𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈))
2115, 20eqtrdi 2786 . 2 (𝜑 → (𝑅𝐴) = ((𝑅𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)))
2213, 21, 143sstr4d 4014 1 (𝜑 → (𝑅𝐴) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  cun 3924  wss 3926  cima 5657  ccom 5658  cfv 6530  t+ctcl 15002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fv 6538  df-trcl 15004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator