| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege109d | Structured version Visualization version GIF version | ||
| Description: If 𝐴 contains all elements of 𝑈 and all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 109 of [Frege1879] p. 74. Compare with frege109 43968. (Contributed by RP, 15-Jul-2020.) |
| Ref | Expression |
|---|---|
| frege109d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
| frege109d.a | ⊢ (𝜑 → 𝐴 = (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) |
| Ref | Expression |
|---|---|
| frege109d | ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege109d.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 2 | trclfvlb 14981 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅)) | |
| 3 | imass1 6075 | . . . . 5 ⊢ (𝑅 ⊆ (t+‘𝑅) → (𝑅 “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) |
| 5 | coss1 5822 | . . . . . . 7 ⊢ (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) | |
| 6 | 1, 2, 5 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) |
| 7 | trclfvcotrg 14989 | . . . . . 6 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) | |
| 8 | 6, 7 | sstrdi 3962 | . . . . 5 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
| 9 | imass1 6075 | . . . . 5 ⊢ ((𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) |
| 11 | 4, 10 | unssd 4158 | . . 3 ⊢ (𝜑 → ((𝑅 “ 𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) ⊆ ((t+‘𝑅) “ 𝑈)) |
| 12 | ssun2 4145 | . . 3 ⊢ ((t+‘𝑅) “ 𝑈) ⊆ (𝑈 ∪ ((t+‘𝑅) “ 𝑈)) | |
| 13 | 11, 12 | sstrdi 3962 | . 2 ⊢ (𝜑 → ((𝑅 “ 𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) ⊆ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) |
| 14 | frege109d.a | . . . 4 ⊢ (𝜑 → 𝐴 = (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) | |
| 15 | 14 | imaeq2d 6034 | . . 3 ⊢ (𝜑 → (𝑅 “ 𝐴) = (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈)))) |
| 16 | imaundi 6125 | . . . 4 ⊢ (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) = ((𝑅 “ 𝑈) ∪ (𝑅 “ ((t+‘𝑅) “ 𝑈))) | |
| 17 | imaco 6227 | . . . . . 6 ⊢ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) = (𝑅 “ ((t+‘𝑅) “ 𝑈)) | |
| 18 | 17 | eqcomi 2739 | . . . . 5 ⊢ (𝑅 “ ((t+‘𝑅) “ 𝑈)) = ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) |
| 19 | 18 | uneq2i 4131 | . . . 4 ⊢ ((𝑅 “ 𝑈) ∪ (𝑅 “ ((t+‘𝑅) “ 𝑈))) = ((𝑅 “ 𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) |
| 20 | 16, 19 | eqtri 2753 | . . 3 ⊢ (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) = ((𝑅 “ 𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) |
| 21 | 15, 20 | eqtrdi 2781 | . 2 ⊢ (𝜑 → (𝑅 “ 𝐴) = ((𝑅 “ 𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈))) |
| 22 | 13, 21, 14 | 3sstr4d 4005 | 1 ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 “ cima 5644 ∘ ccom 5645 ‘cfv 6514 t+ctcl 14958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-trcl 14960 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |