Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege109d Structured version   Visualization version   GIF version

Theorem frege109d 43730
Description: If 𝐴 contains all elements of 𝑈 and all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 109 of [Frege1879] p. 74. Compare with frege109 43945. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege109d.r (𝜑𝑅 ∈ V)
frege109d.a (𝜑𝐴 = (𝑈 ∪ ((t+‘𝑅) “ 𝑈)))
Assertion
Ref Expression
frege109d (𝜑 → (𝑅𝐴) ⊆ 𝐴)

Proof of Theorem frege109d
StepHypRef Expression
1 frege109d.r . . . . 5 (𝜑𝑅 ∈ V)
2 trclfvlb 14915 . . . . 5 (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅))
3 imass1 6052 . . . . 5 (𝑅 ⊆ (t+‘𝑅) → (𝑅𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
41, 2, 33syl 18 . . . 4 (𝜑 → (𝑅𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
5 coss1 5798 . . . . . . 7 (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
61, 2, 53syl 18 . . . . . 6 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
7 trclfvcotrg 14923 . . . . . 6 ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)
86, 7sstrdi 3948 . . . . 5 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
9 imass1 6052 . . . . 5 ((𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
108, 9syl 17 . . . 4 (𝜑 → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
114, 10unssd 4143 . . 3 (𝜑 → ((𝑅𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) ⊆ ((t+‘𝑅) “ 𝑈))
12 ssun2 4130 . . 3 ((t+‘𝑅) “ 𝑈) ⊆ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))
1311, 12sstrdi 3948 . 2 (𝜑 → ((𝑅𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) ⊆ (𝑈 ∪ ((t+‘𝑅) “ 𝑈)))
14 frege109d.a . . . 4 (𝜑𝐴 = (𝑈 ∪ ((t+‘𝑅) “ 𝑈)))
1514imaeq2d 6011 . . 3 (𝜑 → (𝑅𝐴) = (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))))
16 imaundi 6098 . . . 4 (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) = ((𝑅𝑈) ∪ (𝑅 “ ((t+‘𝑅) “ 𝑈)))
17 imaco 6200 . . . . . 6 ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) = (𝑅 “ ((t+‘𝑅) “ 𝑈))
1817eqcomi 2738 . . . . 5 (𝑅 “ ((t+‘𝑅) “ 𝑈)) = ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)
1918uneq2i 4116 . . . 4 ((𝑅𝑈) ∪ (𝑅 “ ((t+‘𝑅) “ 𝑈))) = ((𝑅𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈))
2016, 19eqtri 2752 . . 3 (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) = ((𝑅𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈))
2115, 20eqtrdi 2780 . 2 (𝜑 → (𝑅𝐴) = ((𝑅𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)))
2213, 21, 143sstr4d 3991 1 (𝜑 → (𝑅𝐴) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  cun 3901  wss 3903  cima 5622  ccom 5623  cfv 6482  t+ctcl 14892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fv 6490  df-trcl 14894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator