Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege109d | Structured version Visualization version GIF version |
Description: If 𝐴 contains all elements of 𝑈 and all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 109 of [Frege1879] p. 74. Compare with frege109 41580. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege109d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
frege109d.a | ⊢ (𝜑 → 𝐴 = (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) |
Ref | Expression |
---|---|
frege109d | ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege109d.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | trclfvlb 14719 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅)) | |
3 | imass1 6009 | . . . . 5 ⊢ (𝑅 ⊆ (t+‘𝑅) → (𝑅 “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) |
5 | coss1 5764 | . . . . . . 7 ⊢ (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) | |
6 | 1, 2, 5 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) |
7 | trclfvcotrg 14727 | . . . . . 6 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) | |
8 | 6, 7 | sstrdi 3933 | . . . . 5 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
9 | imass1 6009 | . . . . 5 ⊢ ((𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) |
11 | 4, 10 | unssd 4120 | . . 3 ⊢ (𝜑 → ((𝑅 “ 𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) ⊆ ((t+‘𝑅) “ 𝑈)) |
12 | ssun2 4107 | . . 3 ⊢ ((t+‘𝑅) “ 𝑈) ⊆ (𝑈 ∪ ((t+‘𝑅) “ 𝑈)) | |
13 | 11, 12 | sstrdi 3933 | . 2 ⊢ (𝜑 → ((𝑅 “ 𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) ⊆ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) |
14 | frege109d.a | . . . 4 ⊢ (𝜑 → 𝐴 = (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) | |
15 | 14 | imaeq2d 5969 | . . 3 ⊢ (𝜑 → (𝑅 “ 𝐴) = (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈)))) |
16 | imaundi 6053 | . . . 4 ⊢ (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) = ((𝑅 “ 𝑈) ∪ (𝑅 “ ((t+‘𝑅) “ 𝑈))) | |
17 | imaco 6155 | . . . . . 6 ⊢ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) = (𝑅 “ ((t+‘𝑅) “ 𝑈)) | |
18 | 17 | eqcomi 2747 | . . . . 5 ⊢ (𝑅 “ ((t+‘𝑅) “ 𝑈)) = ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) |
19 | 18 | uneq2i 4094 | . . . 4 ⊢ ((𝑅 “ 𝑈) ∪ (𝑅 “ ((t+‘𝑅) “ 𝑈))) = ((𝑅 “ 𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) |
20 | 16, 19 | eqtri 2766 | . . 3 ⊢ (𝑅 “ (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) = ((𝑅 “ 𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) |
21 | 15, 20 | eqtrdi 2794 | . 2 ⊢ (𝜑 → (𝑅 “ 𝐴) = ((𝑅 “ 𝑈) ∪ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈))) |
22 | 13, 21, 14 | 3sstr4d 3968 | 1 ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 “ cima 5592 ∘ ccom 5593 ‘cfv 6433 t+ctcl 14696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-trcl 14698 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |