Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege97d | Structured version Visualization version GIF version |
Description: If 𝐴 contains all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 97 of [Frege1879] p. 71. Compare with frege97 41457. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege97d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
frege97d.a | ⊢ (𝜑 → 𝐴 = ((t+‘𝑅) “ 𝑈)) |
Ref | Expression |
---|---|
frege97d | ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege97d.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | trclfvlb 14647 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅)) | |
3 | coss1 5753 | . . . . 5 ⊢ (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) |
5 | trclfvcotrg 14655 | . . . 4 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) | |
6 | 4, 5 | sstrdi 3929 | . . 3 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
7 | imass1 5998 | . . 3 ⊢ ((𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) |
9 | frege97d.a | . . . 4 ⊢ (𝜑 → 𝐴 = ((t+‘𝑅) “ 𝑈)) | |
10 | 9 | imaeq2d 5958 | . . 3 ⊢ (𝜑 → (𝑅 “ 𝐴) = (𝑅 “ ((t+‘𝑅) “ 𝑈))) |
11 | imaco 6144 | . . 3 ⊢ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) = (𝑅 “ ((t+‘𝑅) “ 𝑈)) | |
12 | 10, 11 | eqtr4di 2797 | . 2 ⊢ (𝜑 → (𝑅 “ 𝐴) = ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) |
13 | 8, 12, 9 | 3sstr4d 3964 | 1 ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 “ cima 5583 ∘ ccom 5584 ‘cfv 6418 t+ctcl 14624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-trcl 14626 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |