![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege97d | Structured version Visualization version GIF version |
Description: If 𝐴 contains all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 97 of [Frege1879] p. 71. Compare with frege97 42696. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege97d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
frege97d.a | ⊢ (𝜑 → 𝐴 = ((t+‘𝑅) “ 𝑈)) |
Ref | Expression |
---|---|
frege97d | ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege97d.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | trclfvlb 14951 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅)) | |
3 | coss1 5853 | . . . . 5 ⊢ (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) |
5 | trclfvcotrg 14959 | . . . 4 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) | |
6 | 4, 5 | sstrdi 3993 | . . 3 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
7 | imass1 6097 | . . 3 ⊢ ((𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) |
9 | frege97d.a | . . . 4 ⊢ (𝜑 → 𝐴 = ((t+‘𝑅) “ 𝑈)) | |
10 | 9 | imaeq2d 6057 | . . 3 ⊢ (𝜑 → (𝑅 “ 𝐴) = (𝑅 “ ((t+‘𝑅) “ 𝑈))) |
11 | imaco 6247 | . . 3 ⊢ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) = (𝑅 “ ((t+‘𝑅) “ 𝑈)) | |
12 | 10, 11 | eqtr4di 2790 | . 2 ⊢ (𝜑 → (𝑅 “ 𝐴) = ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) |
13 | 8, 12, 9 | 3sstr4d 4028 | 1 ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3947 “ cima 5678 ∘ ccom 5679 ‘cfv 6540 t+ctcl 14928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fv 6548 df-trcl 14930 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |