Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege97d Structured version   Visualization version   GIF version

Theorem frege97d 42488
Description: If 𝐴 contains all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 97 of [Frege1879] p. 71. Compare with frege97 42696. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege97d.r (𝜑𝑅 ∈ V)
frege97d.a (𝜑𝐴 = ((t+‘𝑅) “ 𝑈))
Assertion
Ref Expression
frege97d (𝜑 → (𝑅𝐴) ⊆ 𝐴)

Proof of Theorem frege97d
StepHypRef Expression
1 frege97d.r . . . . 5 (𝜑𝑅 ∈ V)
2 trclfvlb 14951 . . . . 5 (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅))
3 coss1 5853 . . . . 5 (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
41, 2, 33syl 18 . . . 4 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
5 trclfvcotrg 14959 . . . 4 ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)
64, 5sstrdi 3993 . . 3 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
7 imass1 6097 . . 3 ((𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
86, 7syl 17 . 2 (𝜑 → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
9 frege97d.a . . . 4 (𝜑𝐴 = ((t+‘𝑅) “ 𝑈))
109imaeq2d 6057 . . 3 (𝜑 → (𝑅𝐴) = (𝑅 “ ((t+‘𝑅) “ 𝑈)))
11 imaco 6247 . . 3 ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) = (𝑅 “ ((t+‘𝑅) “ 𝑈))
1210, 11eqtr4di 2790 . 2 (𝜑 → (𝑅𝐴) = ((𝑅 ∘ (t+‘𝑅)) “ 𝑈))
138, 12, 93sstr4d 4028 1 (𝜑 → (𝑅𝐴) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  wss 3947  cima 5678  ccom 5679  cfv 6540  t+ctcl 14928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fv 6548  df-trcl 14930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator