![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege97d | Structured version Visualization version GIF version |
Description: If 𝐴 contains all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 97 of [Frege1879] p. 71. Compare with frege97 43922. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege97d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
frege97d.a | ⊢ (𝜑 → 𝐴 = ((t+‘𝑅) “ 𝑈)) |
Ref | Expression |
---|---|
frege97d | ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege97d.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | trclfvlb 15057 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅)) | |
3 | coss1 5880 | . . . . 5 ⊢ (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) | |
4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) |
5 | trclfvcotrg 15065 | . . . 4 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) | |
6 | 4, 5 | sstrdi 4021 | . . 3 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
7 | imass1 6131 | . . 3 ⊢ ((𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) |
9 | frege97d.a | . . . 4 ⊢ (𝜑 → 𝐴 = ((t+‘𝑅) “ 𝑈)) | |
10 | 9 | imaeq2d 6089 | . . 3 ⊢ (𝜑 → (𝑅 “ 𝐴) = (𝑅 “ ((t+‘𝑅) “ 𝑈))) |
11 | imaco 6282 | . . 3 ⊢ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) = (𝑅 “ ((t+‘𝑅) “ 𝑈)) | |
12 | 10, 11 | eqtr4di 2798 | . 2 ⊢ (𝜑 → (𝑅 “ 𝐴) = ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) |
13 | 8, 12, 9 | 3sstr4d 4056 | 1 ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 “ cima 5703 ∘ ccom 5704 ‘cfv 6573 t+ctcl 15034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-trcl 15036 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |