Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege97d Structured version   Visualization version   GIF version

Theorem frege97d 41249
Description: If 𝐴 contains all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 97 of [Frege1879] p. 71. Compare with frege97 41457. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege97d.r (𝜑𝑅 ∈ V)
frege97d.a (𝜑𝐴 = ((t+‘𝑅) “ 𝑈))
Assertion
Ref Expression
frege97d (𝜑 → (𝑅𝐴) ⊆ 𝐴)

Proof of Theorem frege97d
StepHypRef Expression
1 frege97d.r . . . . 5 (𝜑𝑅 ∈ V)
2 trclfvlb 14647 . . . . 5 (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅))
3 coss1 5753 . . . . 5 (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
41, 2, 33syl 18 . . . 4 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
5 trclfvcotrg 14655 . . . 4 ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)
64, 5sstrdi 3929 . . 3 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
7 imass1 5998 . . 3 ((𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
86, 7syl 17 . 2 (𝜑 → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
9 frege97d.a . . . 4 (𝜑𝐴 = ((t+‘𝑅) “ 𝑈))
109imaeq2d 5958 . . 3 (𝜑 → (𝑅𝐴) = (𝑅 “ ((t+‘𝑅) “ 𝑈)))
11 imaco 6144 . . 3 ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) = (𝑅 “ ((t+‘𝑅) “ 𝑈))
1210, 11eqtr4di 2797 . 2 (𝜑 → (𝑅𝐴) = ((𝑅 ∘ (t+‘𝑅)) “ 𝑈))
138, 12, 93sstr4d 3964 1 (𝜑 → (𝑅𝐴) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  cima 5583  ccom 5584  cfv 6418  t+ctcl 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-trcl 14626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator