| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege97d | Structured version Visualization version GIF version | ||
| Description: If 𝐴 contains all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 97 of [Frege1879] p. 71. Compare with frege97 43931. (Contributed by RP, 15-Jul-2020.) |
| Ref | Expression |
|---|---|
| frege97d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
| frege97d.a | ⊢ (𝜑 → 𝐴 = ((t+‘𝑅) “ 𝑈)) |
| Ref | Expression |
|---|---|
| frege97d | ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege97d.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 2 | trclfvlb 15025 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅)) | |
| 3 | coss1 5835 | . . . . 5 ⊢ (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) |
| 5 | trclfvcotrg 15033 | . . . 4 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) | |
| 6 | 4, 5 | sstrdi 3971 | . . 3 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
| 7 | imass1 6088 | . . 3 ⊢ ((𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈)) |
| 9 | frege97d.a | . . . 4 ⊢ (𝜑 → 𝐴 = ((t+‘𝑅) “ 𝑈)) | |
| 10 | 9 | imaeq2d 6047 | . . 3 ⊢ (𝜑 → (𝑅 “ 𝐴) = (𝑅 “ ((t+‘𝑅) “ 𝑈))) |
| 11 | imaco 6240 | . . 3 ⊢ ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) = (𝑅 “ ((t+‘𝑅) “ 𝑈)) | |
| 12 | 10, 11 | eqtr4di 2788 | . 2 ⊢ (𝜑 → (𝑅 “ 𝐴) = ((𝑅 ∘ (t+‘𝑅)) “ 𝑈)) |
| 13 | 8, 12, 9 | 3sstr4d 4014 | 1 ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 “ cima 5657 ∘ ccom 5658 ‘cfv 6530 t+ctcl 15002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fv 6538 df-trcl 15004 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |