Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege97d Structured version   Visualization version   GIF version

Theorem frege97d 41360
Description: If 𝐴 contains all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 97 of [Frege1879] p. 71. Compare with frege97 41568. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege97d.r (𝜑𝑅 ∈ V)
frege97d.a (𝜑𝐴 = ((t+‘𝑅) “ 𝑈))
Assertion
Ref Expression
frege97d (𝜑 → (𝑅𝐴) ⊆ 𝐴)

Proof of Theorem frege97d
StepHypRef Expression
1 frege97d.r . . . . 5 (𝜑𝑅 ∈ V)
2 trclfvlb 14719 . . . . 5 (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅))
3 coss1 5764 . . . . 5 (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
41, 2, 33syl 18 . . . 4 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
5 trclfvcotrg 14727 . . . 4 ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)
64, 5sstrdi 3933 . . 3 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
7 imass1 6009 . . 3 ((𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
86, 7syl 17 . 2 (𝜑 → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
9 frege97d.a . . . 4 (𝜑𝐴 = ((t+‘𝑅) “ 𝑈))
109imaeq2d 5969 . . 3 (𝜑 → (𝑅𝐴) = (𝑅 “ ((t+‘𝑅) “ 𝑈)))
11 imaco 6155 . . 3 ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) = (𝑅 “ ((t+‘𝑅) “ 𝑈))
1210, 11eqtr4di 2796 . 2 (𝜑 → (𝑅𝐴) = ((𝑅 ∘ (t+‘𝑅)) “ 𝑈))
138, 12, 93sstr4d 3968 1 (𝜑 → (𝑅𝐴) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  cima 5592  ccom 5593  cfv 6433  t+ctcl 14696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-trcl 14698
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator