Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege97d Structured version   Visualization version   GIF version

Theorem frege97d 43741
Description: If 𝐴 contains all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 97 of [Frege1879] p. 71. Compare with frege97 43949. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege97d.r (𝜑𝑅 ∈ V)
frege97d.a (𝜑𝐴 = ((t+‘𝑅) “ 𝑈))
Assertion
Ref Expression
frege97d (𝜑 → (𝑅𝐴) ⊆ 𝐴)

Proof of Theorem frege97d
StepHypRef Expression
1 frege97d.r . . . . 5 (𝜑𝑅 ∈ V)
2 trclfvlb 14974 . . . . 5 (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅))
3 coss1 5819 . . . . 5 (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
41, 2, 33syl 18 . . . 4 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
5 trclfvcotrg 14982 . . . 4 ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)
64, 5sstrdi 3959 . . 3 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
7 imass1 6072 . . 3 ((𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
86, 7syl 17 . 2 (𝜑 → ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) ⊆ ((t+‘𝑅) “ 𝑈))
9 frege97d.a . . . 4 (𝜑𝐴 = ((t+‘𝑅) “ 𝑈))
109imaeq2d 6031 . . 3 (𝜑 → (𝑅𝐴) = (𝑅 “ ((t+‘𝑅) “ 𝑈)))
11 imaco 6224 . . 3 ((𝑅 ∘ (t+‘𝑅)) “ 𝑈) = (𝑅 “ ((t+‘𝑅) “ 𝑈))
1210, 11eqtr4di 2782 . 2 (𝜑 → (𝑅𝐴) = ((𝑅 ∘ (t+‘𝑅)) “ 𝑈))
138, 12, 93sstr4d 4002 1 (𝜑 → (𝑅𝐴) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  cima 5641  ccom 5642  cfv 6511  t+ctcl 14951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-trcl 14953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator