| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucf1o | Structured version Visualization version GIF version | ||
| Description: The successor operation is a bijective function between the ordinals and the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.) |
| Ref | Expression |
|---|---|
| onsucf1o.f | ⊢ 𝐹 = (𝑥 ∈ On ↦ suc 𝑥) |
| Ref | Expression |
|---|---|
| onsucf1o | ⊢ 𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsucf1o.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ On ↦ suc 𝑥) | |
| 2 | 1 | fin1a2lem2 10292 | . . 3 ⊢ 𝐹:On–1-1→On |
| 3 | f1fn 6720 | . . 3 ⊢ (𝐹:On–1-1→On → 𝐹 Fn On) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ 𝐹 Fn On |
| 5 | 1 | onsucrn 43374 | . 2 ⊢ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} |
| 6 | 1 | fin1a2lem1 10291 | . . . . . 6 ⊢ (𝑎 ∈ On → (𝐹‘𝑎) = suc 𝑎) |
| 7 | 1 | fin1a2lem1 10291 | . . . . . 6 ⊢ (𝑏 ∈ On → (𝐹‘𝑏) = suc 𝑏) |
| 8 | 6, 7 | eqeqan12d 2745 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ suc 𝑎 = suc 𝑏)) |
| 9 | suc11 6415 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (suc 𝑎 = suc 𝑏 ↔ 𝑎 = 𝑏)) | |
| 10 | 8, 9 | bitrd 279 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ 𝑎 = 𝑏)) |
| 11 | 10 | biimpd 229 | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏)) |
| 12 | 11 | rgen2 3172 | . 2 ⊢ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏) |
| 13 | dff1o6 7209 | . 2 ⊢ (𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ↔ (𝐹 Fn On ∧ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ∧ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏))) | |
| 14 | 4, 5, 12, 13 | mpbir3an 1342 | 1 ⊢ 𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {crab 3395 ↦ cmpt 5170 ran crn 5615 Oncon0 6306 suc csuc 6308 Fn wfn 6476 –1-1→wf1 6478 –1-1-onto→wf1o 6480 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |