Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucf1o Structured version   Visualization version   GIF version

Theorem onsucf1o 43261
Description: The successor operation is a bijective function between the ordinals and the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.)
Hypothesis
Ref Expression
onsucf1o.f 𝐹 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
onsucf1o 𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}
Distinct variable groups:   𝐹,𝑎,𝑏   𝑥,𝑎,𝑏
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem onsucf1o
StepHypRef Expression
1 onsucf1o.f . . . 4 𝐹 = (𝑥 ∈ On ↦ suc 𝑥)
21fin1a2lem2 10354 . . 3 𝐹:On–1-1→On
3 f1fn 6757 . . 3 (𝐹:On–1-1→On → 𝐹 Fn On)
42, 3ax-mp 5 . 2 𝐹 Fn On
51onsucrn 43260 . 2 ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}
61fin1a2lem1 10353 . . . . . 6 (𝑎 ∈ On → (𝐹𝑎) = suc 𝑎)
71fin1a2lem1 10353 . . . . . 6 (𝑏 ∈ On → (𝐹𝑏) = suc 𝑏)
86, 7eqeqan12d 2743 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹𝑎) = (𝐹𝑏) ↔ suc 𝑎 = suc 𝑏))
9 suc11 6441 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (suc 𝑎 = suc 𝑏𝑎 = 𝑏))
108, 9bitrd 279 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
1110biimpd 229 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
1211rgen2 3177 . 2 𝑎 ∈ On ∀𝑏 ∈ On ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)
13 dff1o6 7250 . 2 (𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ↔ (𝐹 Fn On ∧ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ∧ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
144, 5, 12, 13mpbir3an 1342 1 𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  cmpt 5188  ran crn 5639  Oncon0 6332  suc csuc 6334   Fn wfn 6506  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator