| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucf1o | Structured version Visualization version GIF version | ||
| Description: The successor operation is a bijective function between the ordinals and the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.) |
| Ref | Expression |
|---|---|
| onsucf1o.f | ⊢ 𝐹 = (𝑥 ∈ On ↦ suc 𝑥) |
| Ref | Expression |
|---|---|
| onsucf1o | ⊢ 𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsucf1o.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ On ↦ suc 𝑥) | |
| 2 | 1 | fin1a2lem2 10354 | . . 3 ⊢ 𝐹:On–1-1→On |
| 3 | f1fn 6757 | . . 3 ⊢ (𝐹:On–1-1→On → 𝐹 Fn On) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ 𝐹 Fn On |
| 5 | 1 | onsucrn 43260 | . 2 ⊢ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} |
| 6 | 1 | fin1a2lem1 10353 | . . . . . 6 ⊢ (𝑎 ∈ On → (𝐹‘𝑎) = suc 𝑎) |
| 7 | 1 | fin1a2lem1 10353 | . . . . . 6 ⊢ (𝑏 ∈ On → (𝐹‘𝑏) = suc 𝑏) |
| 8 | 6, 7 | eqeqan12d 2743 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ suc 𝑎 = suc 𝑏)) |
| 9 | suc11 6441 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (suc 𝑎 = suc 𝑏 ↔ 𝑎 = 𝑏)) | |
| 10 | 8, 9 | bitrd 279 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ 𝑎 = 𝑏)) |
| 11 | 10 | biimpd 229 | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏)) |
| 12 | 11 | rgen2 3177 | . 2 ⊢ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏) |
| 13 | dff1o6 7250 | . 2 ⊢ (𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ↔ (𝐹 Fn On ∧ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ∧ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏))) | |
| 14 | 4, 5, 12, 13 | mpbir3an 1342 | 1 ⊢ 𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3405 ↦ cmpt 5188 ran crn 5639 Oncon0 6332 suc csuc 6334 Fn wfn 6506 –1-1→wf1 6508 –1-1-onto→wf1o 6510 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |