Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucf1o Structured version   Visualization version   GIF version

Theorem onsucf1o 43234
Description: The successor operation is a bijective function between the ordinals and the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.)
Hypothesis
Ref Expression
onsucf1o.f 𝐹 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
onsucf1o 𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}
Distinct variable groups:   𝐹,𝑎,𝑏   𝑥,𝑎,𝑏
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem onsucf1o
StepHypRef Expression
1 onsucf1o.f . . . 4 𝐹 = (𝑥 ∈ On ↦ suc 𝑥)
21fin1a2lem2 10470 . . 3 𝐹:On–1-1→On
3 f1fn 6818 . . 3 (𝐹:On–1-1→On → 𝐹 Fn On)
42, 3ax-mp 5 . 2 𝐹 Fn On
51onsucrn 43233 . 2 ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}
61fin1a2lem1 10469 . . . . . 6 (𝑎 ∈ On → (𝐹𝑎) = suc 𝑎)
71fin1a2lem1 10469 . . . . . 6 (𝑏 ∈ On → (𝐹𝑏) = suc 𝑏)
86, 7eqeqan12d 2754 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹𝑎) = (𝐹𝑏) ↔ suc 𝑎 = suc 𝑏))
9 suc11 6502 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (suc 𝑎 = suc 𝑏𝑎 = 𝑏))
108, 9bitrd 279 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
1110biimpd 229 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
1211rgen2 3205 . 2 𝑎 ∈ On ∀𝑏 ∈ On ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)
13 dff1o6 7311 . 2 (𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ↔ (𝐹 Fn On ∧ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ∧ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
144, 5, 12, 13mpbir3an 1341 1 𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  cmpt 5249  ran crn 5701  Oncon0 6395  suc csuc 6397   Fn wfn 6568  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator