Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucf1o Structured version   Visualization version   GIF version

Theorem onsucf1o 41955
Description: The successor operation is a bijective function between the ordinals and the class of succesor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.)
Hypothesis
Ref Expression
onsucf1o.f 𝐹 = (π‘₯ ∈ On ↦ suc π‘₯)
Assertion
Ref Expression
onsucf1o 𝐹:On–1-1-ontoβ†’{π‘Ž ∈ On ∣ βˆƒπ‘ ∈ On π‘Ž = suc 𝑏}
Distinct variable groups:   𝐹,π‘Ž,𝑏   π‘₯,π‘Ž,𝑏
Allowed substitution hint:   𝐹(π‘₯)

Proof of Theorem onsucf1o
StepHypRef Expression
1 onsucf1o.f . . . 4 𝐹 = (π‘₯ ∈ On ↦ suc π‘₯)
21fin1a2lem2 10392 . . 3 𝐹:On–1-1β†’On
3 f1fn 6785 . . 3 (𝐹:On–1-1β†’On β†’ 𝐹 Fn On)
42, 3ax-mp 5 . 2 𝐹 Fn On
51onsucrn 41954 . 2 ran 𝐹 = {π‘Ž ∈ On ∣ βˆƒπ‘ ∈ On π‘Ž = suc 𝑏}
61fin1a2lem1 10391 . . . . . 6 (π‘Ž ∈ On β†’ (πΉβ€˜π‘Ž) = suc π‘Ž)
71fin1a2lem1 10391 . . . . . 6 (𝑏 ∈ On β†’ (πΉβ€˜π‘) = suc 𝑏)
86, 7eqeqan12d 2747 . . . . 5 ((π‘Ž ∈ On ∧ 𝑏 ∈ On) β†’ ((πΉβ€˜π‘Ž) = (πΉβ€˜π‘) ↔ suc π‘Ž = suc 𝑏))
9 suc11 6468 . . . . 5 ((π‘Ž ∈ On ∧ 𝑏 ∈ On) β†’ (suc π‘Ž = suc 𝑏 ↔ π‘Ž = 𝑏))
108, 9bitrd 279 . . . 4 ((π‘Ž ∈ On ∧ 𝑏 ∈ On) β†’ ((πΉβ€˜π‘Ž) = (πΉβ€˜π‘) ↔ π‘Ž = 𝑏))
1110biimpd 228 . . 3 ((π‘Ž ∈ On ∧ 𝑏 ∈ On) β†’ ((πΉβ€˜π‘Ž) = (πΉβ€˜π‘) β†’ π‘Ž = 𝑏))
1211rgen2 3198 . 2 βˆ€π‘Ž ∈ On βˆ€π‘ ∈ On ((πΉβ€˜π‘Ž) = (πΉβ€˜π‘) β†’ π‘Ž = 𝑏)
13 dff1o6 7268 . 2 (𝐹:On–1-1-ontoβ†’{π‘Ž ∈ On ∣ βˆƒπ‘ ∈ On π‘Ž = suc 𝑏} ↔ (𝐹 Fn On ∧ ran 𝐹 = {π‘Ž ∈ On ∣ βˆƒπ‘ ∈ On π‘Ž = suc 𝑏} ∧ βˆ€π‘Ž ∈ On βˆ€π‘ ∈ On ((πΉβ€˜π‘Ž) = (πΉβ€˜π‘) β†’ π‘Ž = 𝑏)))
144, 5, 12, 13mpbir3an 1342 1 𝐹:On–1-1-ontoβ†’{π‘Ž ∈ On ∣ βˆƒπ‘ ∈ On π‘Ž = suc 𝑏}
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βˆƒwrex 3071  {crab 3433   ↦ cmpt 5230  ran crn 5676  Oncon0 6361  suc csuc 6363   Fn wfn 6535  β€“1-1β†’wf1 6537  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator