Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucf1o Structured version   Visualization version   GIF version

Theorem onsucf1o 43230
Description: The successor operation is a bijective function between the ordinals and the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.)
Hypothesis
Ref Expression
onsucf1o.f 𝐹 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
onsucf1o 𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}
Distinct variable groups:   𝐹,𝑎,𝑏   𝑥,𝑎,𝑏
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem onsucf1o
StepHypRef Expression
1 onsucf1o.f . . . 4 𝐹 = (𝑥 ∈ On ↦ suc 𝑥)
21fin1a2lem2 10424 . . 3 𝐹:On–1-1→On
3 f1fn 6786 . . 3 (𝐹:On–1-1→On → 𝐹 Fn On)
42, 3ax-mp 5 . 2 𝐹 Fn On
51onsucrn 43229 . 2 ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}
61fin1a2lem1 10423 . . . . . 6 (𝑎 ∈ On → (𝐹𝑎) = suc 𝑎)
71fin1a2lem1 10423 . . . . . 6 (𝑏 ∈ On → (𝐹𝑏) = suc 𝑏)
86, 7eqeqan12d 2748 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹𝑎) = (𝐹𝑏) ↔ suc 𝑎 = suc 𝑏))
9 suc11 6472 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (suc 𝑎 = suc 𝑏𝑎 = 𝑏))
108, 9bitrd 279 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹𝑎) = (𝐹𝑏) ↔ 𝑎 = 𝑏))
1110biimpd 229 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
1211rgen2 3186 . 2 𝑎 ∈ On ∀𝑏 ∈ On ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)
13 dff1o6 7278 . 2 (𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ↔ (𝐹 Fn On ∧ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ∧ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
144, 5, 12, 13mpbir3an 1341 1 𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  {crab 3420  cmpt 5207  ran crn 5668  Oncon0 6365  suc csuc 6367   Fn wfn 6537  1-1wf1 6539  1-1-ontowf1o 6541  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator