| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucf1o | Structured version Visualization version GIF version | ||
| Description: The successor operation is a bijective function between the ordinals and the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.) |
| Ref | Expression |
|---|---|
| onsucf1o.f | ⊢ 𝐹 = (𝑥 ∈ On ↦ suc 𝑥) |
| Ref | Expression |
|---|---|
| onsucf1o | ⊢ 𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsucf1o.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ On ↦ suc 𝑥) | |
| 2 | 1 | fin1a2lem2 10295 | . . 3 ⊢ 𝐹:On–1-1→On |
| 3 | f1fn 6721 | . . 3 ⊢ (𝐹:On–1-1→On → 𝐹 Fn On) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ 𝐹 Fn On |
| 5 | 1 | onsucrn 43244 | . 2 ⊢ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} |
| 6 | 1 | fin1a2lem1 10294 | . . . . . 6 ⊢ (𝑎 ∈ On → (𝐹‘𝑎) = suc 𝑎) |
| 7 | 1 | fin1a2lem1 10294 | . . . . . 6 ⊢ (𝑏 ∈ On → (𝐹‘𝑏) = suc 𝑏) |
| 8 | 6, 7 | eqeqan12d 2743 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ suc 𝑎 = suc 𝑏)) |
| 9 | suc11 6416 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (suc 𝑎 = suc 𝑏 ↔ 𝑎 = 𝑏)) | |
| 10 | 8, 9 | bitrd 279 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ 𝑎 = 𝑏)) |
| 11 | 10 | biimpd 229 | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏)) |
| 12 | 11 | rgen2 3169 | . 2 ⊢ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏) |
| 13 | dff1o6 7212 | . 2 ⊢ (𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ↔ (𝐹 Fn On ∧ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ∧ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝐹‘𝑎) = (𝐹‘𝑏) → 𝑎 = 𝑏))) | |
| 14 | 4, 5, 12, 13 | mpbir3an 1342 | 1 ⊢ 𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3394 ↦ cmpt 5173 ran crn 5620 Oncon0 6307 suc csuc 6309 Fn wfn 6477 –1-1→wf1 6479 –1-1-onto→wf1o 6481 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |