![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funimass1 | Structured version Visualization version GIF version |
Description: A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.) |
Ref | Expression |
---|---|
funimass1 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → ((◡𝐹 “ 𝐴) ⊆ 𝐵 → 𝐴 ⊆ (𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imass2 6101 | . 2 ⊢ ((◡𝐹 “ 𝐴) ⊆ 𝐵 → (𝐹 “ (◡𝐹 “ 𝐴)) ⊆ (𝐹 “ 𝐵)) | |
2 | funimacnv 6629 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) | |
3 | dfss 3958 | . . . . . 6 ⊢ (𝐴 ⊆ ran 𝐹 ↔ 𝐴 = (𝐴 ∩ ran 𝐹)) | |
4 | 3 | biimpi 215 | . . . . 5 ⊢ (𝐴 ⊆ ran 𝐹 → 𝐴 = (𝐴 ∩ ran 𝐹)) |
5 | 4 | eqcomd 2731 | . . . 4 ⊢ (𝐴 ⊆ ran 𝐹 → (𝐴 ∩ ran 𝐹) = 𝐴) |
6 | 2, 5 | sylan9eq 2785 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → (𝐹 “ (◡𝐹 “ 𝐴)) = 𝐴) |
7 | 6 | sseq1d 4004 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐹 “ (◡𝐹 “ 𝐴)) ⊆ (𝐹 “ 𝐵) ↔ 𝐴 ⊆ (𝐹 “ 𝐵))) |
8 | 1, 7 | imbitrid 243 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → ((◡𝐹 “ 𝐴) ⊆ 𝐵 → 𝐴 ⊆ (𝐹 “ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∩ cin 3938 ⊆ wss 3939 ◡ccnv 5671 ran crn 5673 “ cima 5675 Fun wfun 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5144 df-opab 5206 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-fun 6545 |
This theorem is referenced by: kqnrmlem1 23665 hmeontr 23691 nrmhmph 23716 cnheiborlem 24898 |
Copyright terms: Public domain | W3C validator |