Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bndss Structured version   Visualization version   GIF version

Theorem bndss 35224
Description: A subset of a bounded metric space is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
bndss ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆))

Proof of Theorem bndss
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metres2 22970 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
21adantlr 714 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
3 ssel2 3910 . . . . . . . . . . . . 13 ((𝑆𝑋𝑥𝑆) → 𝑥𝑋)
43ancoms 462 . . . . . . . . . . . 12 ((𝑥𝑆𝑆𝑋) → 𝑥𝑋)
5 oveq1 7142 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦(ball‘𝑀)𝑟) = (𝑥(ball‘𝑀)𝑟))
65eqeq2d 2809 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
76rexbidv 3256 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
87rspcva 3569 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
94, 8sylan 583 . . . . . . . . . . 11 (((𝑥𝑆𝑆𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
109adantlll 717 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
11 dfss 3899 . . . . . . . . . . . . . . . . . . 19 (𝑆𝑋𝑆 = (𝑆𝑋))
1211biimpi 219 . . . . . . . . . . . . . . . . . 18 (𝑆𝑋𝑆 = (𝑆𝑋))
13 incom 4128 . . . . . . . . . . . . . . . . . 18 (𝑆𝑋) = (𝑋𝑆)
1412, 13eqtrdi 2849 . . . . . . . . . . . . . . . . 17 (𝑆𝑋𝑆 = (𝑋𝑆))
15 ineq1 4131 . . . . . . . . . . . . . . . . 17 (𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑋𝑆) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
1614, 15sylan9eq 2853 . . . . . . . . . . . . . . . 16 ((𝑆𝑋𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
1716adantll 713 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
1817adantlr 714 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
19 eqid 2798 . . . . . . . . . . . . . . . . . 18 (𝑀 ↾ (𝑆 × 𝑆)) = (𝑀 ↾ (𝑆 × 𝑆))
2019blssp 35194 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝑆𝑟 ∈ ℝ+)) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
2120an4s 659 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ (𝑆𝑋𝑟 ∈ ℝ+)) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
2221anassrs 471 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
2322adantr 484 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
2418, 23eqtr4d 2836 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
2524ex 416 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑋 = (𝑥(ball‘𝑀)𝑟) → 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
2625reximdva 3233 . . . . . . . . . . 11 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
2726imp 410 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
2810, 27syldan 594 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
2928an32s 651 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
3029ex 416 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → (𝑆𝑋 → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
3130an32s 651 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑥𝑆) → (𝑆𝑋 → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
3231imp 410 . . . . 5 ((((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑥𝑆) ∧ 𝑆𝑋) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
3332an32s 651 . . . 4 ((((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) ∧ 𝑥𝑆) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
3433ralrimiva 3149 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) → ∀𝑥𝑆𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
352, 34jca 515 . 2 (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) → ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ∧ ∀𝑥𝑆𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
36 isbnd 35218 . . 3 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
3736anbi1i 626 . 2 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆𝑋) ↔ ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋))
38 isbnd 35218 . 2 ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆) ↔ ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ∧ ∀𝑥𝑆𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
3935, 37, 383imtr4i 295 1 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  cin 3880  wss 3881   × cxp 5517  cres 5521  cfv 6324  (class class class)co 7135  +crp 12377  Metcmet 20077  ballcbl 20078  Bndcbnd 35205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-mulcl 10588  ax-i2m1 10594
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-rp 12378  df-xadd 12496  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-bnd 35217
This theorem is referenced by:  ssbnd  35226
  Copyright terms: Public domain W3C validator