Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bndss Structured version   Visualization version   GIF version

Theorem bndss 35923
Description: A subset of a bounded metric space is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
bndss ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆))

Proof of Theorem bndss
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metres2 23497 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
21adantlr 711 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
3 ssel2 3920 . . . . . . . . . . . . 13 ((𝑆𝑋𝑥𝑆) → 𝑥𝑋)
43ancoms 458 . . . . . . . . . . . 12 ((𝑥𝑆𝑆𝑋) → 𝑥𝑋)
5 oveq1 7275 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦(ball‘𝑀)𝑟) = (𝑥(ball‘𝑀)𝑟))
65eqeq2d 2750 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
76rexbidv 3227 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
87rspcva 3558 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
94, 8sylan 579 . . . . . . . . . . 11 (((𝑥𝑆𝑆𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
109adantlll 714 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
11 dfss 3909 . . . . . . . . . . . . . . . . . . 19 (𝑆𝑋𝑆 = (𝑆𝑋))
1211biimpi 215 . . . . . . . . . . . . . . . . . 18 (𝑆𝑋𝑆 = (𝑆𝑋))
13 incom 4139 . . . . . . . . . . . . . . . . . 18 (𝑆𝑋) = (𝑋𝑆)
1412, 13eqtrdi 2795 . . . . . . . . . . . . . . . . 17 (𝑆𝑋𝑆 = (𝑋𝑆))
15 ineq1 4144 . . . . . . . . . . . . . . . . 17 (𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑋𝑆) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
1614, 15sylan9eq 2799 . . . . . . . . . . . . . . . 16 ((𝑆𝑋𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
1716adantll 710 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
1817adantlr 711 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
19 eqid 2739 . . . . . . . . . . . . . . . . . 18 (𝑀 ↾ (𝑆 × 𝑆)) = (𝑀 ↾ (𝑆 × 𝑆))
2019blssp 35893 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝑆𝑟 ∈ ℝ+)) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
2120an4s 656 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ (𝑆𝑋𝑟 ∈ ℝ+)) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
2221anassrs 467 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
2322adantr 480 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
2418, 23eqtr4d 2782 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
2524ex 412 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑋 = (𝑥(ball‘𝑀)𝑟) → 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
2625reximdva 3204 . . . . . . . . . . 11 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
2726imp 406 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
2810, 27syldan 590 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
2928an32s 648 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
3029ex 412 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → (𝑆𝑋 → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
3130an32s 648 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑥𝑆) → (𝑆𝑋 → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
3231imp 406 . . . . 5 ((((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑥𝑆) ∧ 𝑆𝑋) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
3332an32s 648 . . . 4 ((((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) ∧ 𝑥𝑆) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
3433ralrimiva 3109 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) → ∀𝑥𝑆𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
352, 34jca 511 . 2 (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) → ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ∧ ∀𝑥𝑆𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
36 isbnd 35917 . . 3 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
3736anbi1i 623 . 2 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆𝑋) ↔ ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋))
38 isbnd 35917 . 2 ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆) ↔ ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ∧ ∀𝑥𝑆𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
3935, 37, 383imtr4i 291 1 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wral 3065  wrex 3066  cin 3890  wss 3891   × cxp 5586  cres 5590  cfv 6430  (class class class)co 7268  +crp 12712  Metcmet 20564  ballcbl 20565  Bndcbnd 35904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-mulcl 10917  ax-i2m1 10923
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-rp 12713  df-xadd 12831  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-bnd 35916
This theorem is referenced by:  ssbnd  35925
  Copyright terms: Public domain W3C validator