| Step | Hyp | Ref
| Expression |
| 1 | | metres2 24373 |
. . . 4
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆)) |
| 2 | 1 | adantlr 715 |
. . 3
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆 ⊆ 𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆)) |
| 3 | | ssel2 3978 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑋) |
| 4 | 3 | ancoms 458 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑆 ⊆ 𝑋) → 𝑥 ∈ 𝑋) |
| 5 | | oveq1 7438 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → (𝑦(ball‘𝑀)𝑟) = (𝑥(ball‘𝑀)𝑟)) |
| 6 | 5 | eqeq2d 2748 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑥(ball‘𝑀)𝑟))) |
| 7 | 6 | rexbidv 3179 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) |
| 8 | 7 | rspcva 3620 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) |
| 9 | 4, 8 | sylan 580 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑆 ⊆ 𝑋) ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) |
| 10 | 9 | adantlll 718 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑆) ∧ 𝑆 ⊆ 𝑋) ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) |
| 11 | | dfss 3970 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑆 ⊆ 𝑋 ↔ 𝑆 = (𝑆 ∩ 𝑋)) |
| 12 | 11 | biimpi 216 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 ⊆ 𝑋 → 𝑆 = (𝑆 ∩ 𝑋)) |
| 13 | | incom 4209 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 ∩ 𝑋) = (𝑋 ∩ 𝑆) |
| 14 | 12, 13 | eqtrdi 2793 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 ⊆ 𝑋 → 𝑆 = (𝑋 ∩ 𝑆)) |
| 15 | | ineq1 4213 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑋 ∩ 𝑆) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆)) |
| 16 | 14, 15 | sylan9eq 2797 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆)) |
| 17 | 16 | adantll 714 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑆) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆)) |
| 18 | 17 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ 𝑆) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆)) |
| 19 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ↾ (𝑆 × 𝑆)) = (𝑀 ↾ (𝑆 × 𝑆)) |
| 20 | 19 | blssp 37763 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+)) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆)) |
| 21 | 20 | an4s 660 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑆) ∧ (𝑆 ⊆ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆)) |
| 22 | 21 | anassrs 467 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑆) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆)) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ 𝑆) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆)) |
| 24 | 18, 23 | eqtr4d 2780 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ 𝑆) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)) |
| 25 | 24 | ex 412 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑆) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑋 = (𝑥(ball‘𝑀)𝑟) → 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))) |
| 26 | 25 | reximdva 3168 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑆) ∧ 𝑆 ⊆ 𝑋) → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))) |
| 27 | 26 | imp 406 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑆) ∧ 𝑆 ⊆ 𝑋) ∧ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)) |
| 28 | 10, 27 | syldan 591 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑆) ∧ 𝑆 ⊆ 𝑋) ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)) |
| 29 | 28 | an32s 652 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑆) ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆 ⊆ 𝑋) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)) |
| 30 | 29 | ex 412 |
. . . . . . 7
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑆) ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → (𝑆 ⊆ 𝑋 → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))) |
| 31 | 30 | an32s 652 |
. . . . . 6
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑥 ∈ 𝑆) → (𝑆 ⊆ 𝑋 → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))) |
| 32 | 31 | imp 406 |
. . . . 5
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑥 ∈ 𝑆) ∧ 𝑆 ⊆ 𝑋) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)) |
| 33 | 32 | an32s 652 |
. . . 4
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑆) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)) |
| 34 | 33 | ralrimiva 3146 |
. . 3
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆 ⊆ 𝑋) → ∀𝑥 ∈ 𝑆 ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)) |
| 35 | 2, 34 | jca 511 |
. 2
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆 ⊆ 𝑋) → ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ∧ ∀𝑥 ∈ 𝑆 ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))) |
| 36 | | isbnd 37787 |
. . 3
⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))) |
| 37 | 36 | anbi1i 624 |
. 2
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆 ⊆ 𝑋) ↔ ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆 ⊆ 𝑋)) |
| 38 | | isbnd 37787 |
. 2
⊢ ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆) ↔ ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ∧ ∀𝑥 ∈ 𝑆 ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))) |
| 39 | 35, 37, 38 | 3imtr4i 292 |
1
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆)) |