Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bndss Structured version   Visualization version   GIF version

Theorem bndss 37746
Description: A subset of a bounded metric space is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
bndss ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆))

Proof of Theorem bndss
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metres2 24394 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
21adantlr 714 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
3 ssel2 4003 . . . . . . . . . . . . 13 ((𝑆𝑋𝑥𝑆) → 𝑥𝑋)
43ancoms 458 . . . . . . . . . . . 12 ((𝑥𝑆𝑆𝑋) → 𝑥𝑋)
5 oveq1 7455 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦(ball‘𝑀)𝑟) = (𝑥(ball‘𝑀)𝑟))
65eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
76rexbidv 3185 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
87rspcva 3633 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
94, 8sylan 579 . . . . . . . . . . 11 (((𝑥𝑆𝑆𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
109adantlll 717 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
11 dfss 3995 . . . . . . . . . . . . . . . . . . 19 (𝑆𝑋𝑆 = (𝑆𝑋))
1211biimpi 216 . . . . . . . . . . . . . . . . . 18 (𝑆𝑋𝑆 = (𝑆𝑋))
13 incom 4230 . . . . . . . . . . . . . . . . . 18 (𝑆𝑋) = (𝑋𝑆)
1412, 13eqtrdi 2796 . . . . . . . . . . . . . . . . 17 (𝑆𝑋𝑆 = (𝑋𝑆))
15 ineq1 4234 . . . . . . . . . . . . . . . . 17 (𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑋𝑆) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
1614, 15sylan9eq 2800 . . . . . . . . . . . . . . . 16 ((𝑆𝑋𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
1716adantll 713 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
1817adantlr 714 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
19 eqid 2740 . . . . . . . . . . . . . . . . . 18 (𝑀 ↾ (𝑆 × 𝑆)) = (𝑀 ↾ (𝑆 × 𝑆))
2019blssp 37716 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝑆𝑟 ∈ ℝ+)) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
2120an4s 659 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ (𝑆𝑋𝑟 ∈ ℝ+)) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
2221anassrs 467 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
2322adantr 480 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
2418, 23eqtr4d 2783 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
2524ex 412 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑋 = (𝑥(ball‘𝑀)𝑟) → 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
2625reximdva 3174 . . . . . . . . . . 11 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
2726imp 406 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
2810, 27syldan 590 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
2928an32s 651 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
3029ex 412 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → (𝑆𝑋 → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
3130an32s 651 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑥𝑆) → (𝑆𝑋 → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
3231imp 406 . . . . 5 ((((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑥𝑆) ∧ 𝑆𝑋) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
3332an32s 651 . . . 4 ((((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) ∧ 𝑥𝑆) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
3433ralrimiva 3152 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) → ∀𝑥𝑆𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
352, 34jca 511 . 2 (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) → ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ∧ ∀𝑥𝑆𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
36 isbnd 37740 . . 3 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
3736anbi1i 623 . 2 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆𝑋) ↔ ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋))
38 isbnd 37740 . 2 ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆) ↔ ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ∧ ∀𝑥𝑆𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
3935, 37, 383imtr4i 292 1 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cin 3975  wss 3976   × cxp 5698  cres 5702  cfv 6573  (class class class)co 7448  +crp 13057  Metcmet 21373  ballcbl 21374  Bndcbnd 37727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-mulcl 11246  ax-i2m1 11252
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-rp 13058  df-xadd 13176  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-bnd 37739
This theorem is referenced by:  ssbnd  37748
  Copyright terms: Public domain W3C validator