Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bndss Structured version   Visualization version   GIF version

Theorem bndss 36459
Description: A subset of a bounded metric space is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
bndss ((𝑀 ∈ (Bndβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) β†’ (𝑀 β†Ύ (𝑆 Γ— 𝑆)) ∈ (Bndβ€˜π‘†))

Proof of Theorem bndss
Dummy variables π‘Ÿ π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metres2 23798 . . . 4 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) β†’ (𝑀 β†Ύ (𝑆 Γ— 𝑆)) ∈ (Metβ€˜π‘†))
21adantlr 713 . . 3 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)π‘Ÿ)) ∧ 𝑆 βŠ† 𝑋) β†’ (𝑀 β†Ύ (𝑆 Γ— 𝑆)) ∈ (Metβ€˜π‘†))
3 ssel2 3973 . . . . . . . . . . . . 13 ((𝑆 βŠ† 𝑋 ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ 𝑋)
43ancoms 459 . . . . . . . . . . . 12 ((π‘₯ ∈ 𝑆 ∧ 𝑆 βŠ† 𝑋) β†’ π‘₯ ∈ 𝑋)
5 oveq1 7400 . . . . . . . . . . . . . . 15 (𝑦 = π‘₯ β†’ (𝑦(ballβ€˜π‘€)π‘Ÿ) = (π‘₯(ballβ€˜π‘€)π‘Ÿ))
65eqeq2d 2742 . . . . . . . . . . . . . 14 (𝑦 = π‘₯ β†’ (𝑋 = (𝑦(ballβ€˜π‘€)π‘Ÿ) ↔ 𝑋 = (π‘₯(ballβ€˜π‘€)π‘Ÿ)))
76rexbidv 3177 . . . . . . . . . . . . 13 (𝑦 = π‘₯ β†’ (βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)π‘Ÿ) ↔ βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (π‘₯(ballβ€˜π‘€)π‘Ÿ)))
87rspcva 3607 . . . . . . . . . . . 12 ((π‘₯ ∈ 𝑋 ∧ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)π‘Ÿ)) β†’ βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (π‘₯(ballβ€˜π‘€)π‘Ÿ))
94, 8sylan 580 . . . . . . . . . . 11 (((π‘₯ ∈ 𝑆 ∧ 𝑆 βŠ† 𝑋) ∧ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)π‘Ÿ)) β†’ βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (π‘₯(ballβ€˜π‘€)π‘Ÿ))
109adantlll 716 . . . . . . . . . 10 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑆) ∧ 𝑆 βŠ† 𝑋) ∧ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)π‘Ÿ)) β†’ βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (π‘₯(ballβ€˜π‘€)π‘Ÿ))
11 dfss 3962 . . . . . . . . . . . . . . . . . . 19 (𝑆 βŠ† 𝑋 ↔ 𝑆 = (𝑆 ∩ 𝑋))
1211biimpi 215 . . . . . . . . . . . . . . . . . 18 (𝑆 βŠ† 𝑋 β†’ 𝑆 = (𝑆 ∩ 𝑋))
13 incom 4197 . . . . . . . . . . . . . . . . . 18 (𝑆 ∩ 𝑋) = (𝑋 ∩ 𝑆)
1412, 13eqtrdi 2787 . . . . . . . . . . . . . . . . 17 (𝑆 βŠ† 𝑋 β†’ 𝑆 = (𝑋 ∩ 𝑆))
15 ineq1 4201 . . . . . . . . . . . . . . . . 17 (𝑋 = (π‘₯(ballβ€˜π‘€)π‘Ÿ) β†’ (𝑋 ∩ 𝑆) = ((π‘₯(ballβ€˜π‘€)π‘Ÿ) ∩ 𝑆))
1614, 15sylan9eq 2791 . . . . . . . . . . . . . . . 16 ((𝑆 βŠ† 𝑋 ∧ 𝑋 = (π‘₯(ballβ€˜π‘€)π‘Ÿ)) β†’ 𝑆 = ((π‘₯(ballβ€˜π‘€)π‘Ÿ) ∩ 𝑆))
1716adantll 712 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑆) ∧ 𝑆 βŠ† 𝑋) ∧ 𝑋 = (π‘₯(ballβ€˜π‘€)π‘Ÿ)) β†’ 𝑆 = ((π‘₯(ballβ€˜π‘€)π‘Ÿ) ∩ 𝑆))
1817adantlr 713 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑆) ∧ 𝑆 βŠ† 𝑋) ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑋 = (π‘₯(ballβ€˜π‘€)π‘Ÿ)) β†’ 𝑆 = ((π‘₯(ballβ€˜π‘€)π‘Ÿ) ∩ 𝑆))
19 eqid 2731 . . . . . . . . . . . . . . . . . 18 (𝑀 β†Ύ (𝑆 Γ— 𝑆)) = (𝑀 β†Ύ (𝑆 Γ— 𝑆))
2019blssp 36429 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ (π‘₯ ∈ 𝑆 ∧ π‘Ÿ ∈ ℝ+)) β†’ (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ) = ((π‘₯(ballβ€˜π‘€)π‘Ÿ) ∩ 𝑆))
2120an4s 658 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑆) ∧ (𝑆 βŠ† 𝑋 ∧ π‘Ÿ ∈ ℝ+)) β†’ (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ) = ((π‘₯(ballβ€˜π‘€)π‘Ÿ) ∩ 𝑆))
2221anassrs 468 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑆) ∧ 𝑆 βŠ† 𝑋) ∧ π‘Ÿ ∈ ℝ+) β†’ (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ) = ((π‘₯(ballβ€˜π‘€)π‘Ÿ) ∩ 𝑆))
2322adantr 481 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑆) ∧ 𝑆 βŠ† 𝑋) ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑋 = (π‘₯(ballβ€˜π‘€)π‘Ÿ)) β†’ (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ) = ((π‘₯(ballβ€˜π‘€)π‘Ÿ) ∩ 𝑆))
2418, 23eqtr4d 2774 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑆) ∧ 𝑆 βŠ† 𝑋) ∧ π‘Ÿ ∈ ℝ+) ∧ 𝑋 = (π‘₯(ballβ€˜π‘€)π‘Ÿ)) β†’ 𝑆 = (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ))
2524ex 413 . . . . . . . . . . . 12 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑆) ∧ 𝑆 βŠ† 𝑋) ∧ π‘Ÿ ∈ ℝ+) β†’ (𝑋 = (π‘₯(ballβ€˜π‘€)π‘Ÿ) β†’ 𝑆 = (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ)))
2625reximdva 3167 . . . . . . . . . . 11 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑆) ∧ 𝑆 βŠ† 𝑋) β†’ (βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (π‘₯(ballβ€˜π‘€)π‘Ÿ) β†’ βˆƒπ‘Ÿ ∈ ℝ+ 𝑆 = (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ)))
2726imp 407 . . . . . . . . . 10 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑆) ∧ 𝑆 βŠ† 𝑋) ∧ βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (π‘₯(ballβ€˜π‘€)π‘Ÿ)) β†’ βˆƒπ‘Ÿ ∈ ℝ+ 𝑆 = (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ))
2810, 27syldan 591 . . . . . . . . 9 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑆) ∧ 𝑆 βŠ† 𝑋) ∧ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)π‘Ÿ)) β†’ βˆƒπ‘Ÿ ∈ ℝ+ 𝑆 = (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ))
2928an32s 650 . . . . . . . 8 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑆) ∧ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)π‘Ÿ)) ∧ 𝑆 βŠ† 𝑋) β†’ βˆƒπ‘Ÿ ∈ ℝ+ 𝑆 = (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ))
3029ex 413 . . . . . . 7 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑆) ∧ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)π‘Ÿ)) β†’ (𝑆 βŠ† 𝑋 β†’ βˆƒπ‘Ÿ ∈ ℝ+ 𝑆 = (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ)))
3130an32s 650 . . . . . 6 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)π‘Ÿ)) ∧ π‘₯ ∈ 𝑆) β†’ (𝑆 βŠ† 𝑋 β†’ βˆƒπ‘Ÿ ∈ ℝ+ 𝑆 = (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ)))
3231imp 407 . . . . 5 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)π‘Ÿ)) ∧ π‘₯ ∈ 𝑆) ∧ 𝑆 βŠ† 𝑋) β†’ βˆƒπ‘Ÿ ∈ ℝ+ 𝑆 = (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ))
3332an32s 650 . . . 4 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)π‘Ÿ)) ∧ 𝑆 βŠ† 𝑋) ∧ π‘₯ ∈ 𝑆) β†’ βˆƒπ‘Ÿ ∈ ℝ+ 𝑆 = (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ))
3433ralrimiva 3145 . . 3 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)π‘Ÿ)) ∧ 𝑆 βŠ† 𝑋) β†’ βˆ€π‘₯ ∈ 𝑆 βˆƒπ‘Ÿ ∈ ℝ+ 𝑆 = (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ))
352, 34jca 512 . 2 (((𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)π‘Ÿ)) ∧ 𝑆 βŠ† 𝑋) β†’ ((𝑀 β†Ύ (𝑆 Γ— 𝑆)) ∈ (Metβ€˜π‘†) ∧ βˆ€π‘₯ ∈ 𝑆 βˆƒπ‘Ÿ ∈ ℝ+ 𝑆 = (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ)))
36 isbnd 36453 . . 3 (𝑀 ∈ (Bndβ€˜π‘‹) ↔ (𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)π‘Ÿ)))
3736anbi1i 624 . 2 ((𝑀 ∈ (Bndβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ↔ ((𝑀 ∈ (Metβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ+ 𝑋 = (𝑦(ballβ€˜π‘€)π‘Ÿ)) ∧ 𝑆 βŠ† 𝑋))
38 isbnd 36453 . 2 ((𝑀 β†Ύ (𝑆 Γ— 𝑆)) ∈ (Bndβ€˜π‘†) ↔ ((𝑀 β†Ύ (𝑆 Γ— 𝑆)) ∈ (Metβ€˜π‘†) ∧ βˆ€π‘₯ ∈ 𝑆 βˆƒπ‘Ÿ ∈ ℝ+ 𝑆 = (π‘₯(ballβ€˜(𝑀 β†Ύ (𝑆 Γ— 𝑆)))π‘Ÿ)))
3935, 37, 383imtr4i 291 1 ((𝑀 ∈ (Bndβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) β†’ (𝑀 β†Ύ (𝑆 Γ— 𝑆)) ∈ (Bndβ€˜π‘†))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3060  βˆƒwrex 3069   ∩ cin 3943   βŠ† wss 3944   Γ— cxp 5667   β†Ύ cres 5671  β€˜cfv 6532  (class class class)co 7393  β„+crp 12956  Metcmet 20864  ballcbl 20865  Bndcbnd 36440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-mulcl 11154  ax-i2m1 11160
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-1st 7957  df-2nd 7958  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-rp 12957  df-xadd 13075  df-psmet 20870  df-xmet 20871  df-met 20872  df-bl 20873  df-bnd 36452
This theorem is referenced by:  ssbnd  36461
  Copyright terms: Public domain W3C validator