MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1bas Structured version   Visualization version   GIF version

Theorem smndex1bas 18063
Description: The base set of the monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾). (Contributed by AV, 12-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1bas (Base‘𝑆) = 𝐵
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑥,𝑛)   𝐺(𝑥)   𝐼(𝑥,𝑛)

Proof of Theorem smndex1bas
StepHypRef Expression
1 smndex1ibas.m . . . 4 𝑀 = (EndoFMnd‘ℕ0)
2 smndex1ibas.n . . . 4 𝑁 ∈ ℕ
3 smndex1ibas.i . . . 4 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
4 smndex1ibas.g . . . 4 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
5 smndex1mgm.b . . . 4 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
61, 2, 3, 4, 5smndex1basss 18062 . . 3 𝐵 ⊆ (Base‘𝑀)
7 dfss 3899 . . 3 (𝐵 ⊆ (Base‘𝑀) ↔ 𝐵 = (𝐵 ∩ (Base‘𝑀)))
86, 7mpbi 233 . 2 𝐵 = (𝐵 ∩ (Base‘𝑀))
9 snex 5297 . . . . 5 {𝐼} ∈ V
10 ovex 7168 . . . . . 6 (0..^𝑁) ∈ V
11 snex 5297 . . . . . 6 {(𝐺𝑛)} ∈ V
1210, 11iunex 7651 . . . . 5 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ∈ V
139, 12unex 7449 . . . 4 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ∈ V
145, 13eqeltri 2886 . . 3 𝐵 ∈ V
15 smndex1mgm.s . . . 4 𝑆 = (𝑀s 𝐵)
16 eqid 2798 . . . 4 (Base‘𝑀) = (Base‘𝑀)
1715, 16ressbas 16546 . . 3 (𝐵 ∈ V → (𝐵 ∩ (Base‘𝑀)) = (Base‘𝑆))
1814, 17ax-mp 5 . 2 (𝐵 ∩ (Base‘𝑀)) = (Base‘𝑆)
198, 18eqtr2i 2822 1 (Base‘𝑆) = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  Vcvv 3441  cun 3879  cin 3880  wss 3881  {csn 4525   ciun 4881  cmpt 5110  cfv 6324  (class class class)co 7135  0cc0 10526  cn 11625  0cn0 11885  ..^cfzo 13028   mod cmo 13232  Basecbs 16475  s cress 16476  EndoFMndcefmnd 18025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-tset 16576  df-efmnd 18026
This theorem is referenced by:  smndex1mgm  18064  smndex1sgrp  18065  smndex1mnd  18067  smndex1id  18068
  Copyright terms: Public domain W3C validator