| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smndex1bas | Structured version Visualization version GIF version | ||
| Description: The base set of the monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾). (Contributed by AV, 12-Feb-2024.) |
| Ref | Expression |
|---|---|
| smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
| smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
| smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
| smndex1mgm.b | ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
| smndex1mgm.s | ⊢ 𝑆 = (𝑀 ↾s 𝐵) |
| Ref | Expression |
|---|---|
| smndex1bas | ⊢ (Base‘𝑆) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | . . . 4 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
| 2 | smndex1ibas.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | . . . 4 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
| 4 | smndex1ibas.g | . . . 4 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
| 5 | smndex1mgm.b | . . . 4 ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) | |
| 6 | 1, 2, 3, 4, 5 | smndex1basss 18815 | . . 3 ⊢ 𝐵 ⊆ (Base‘𝑀) |
| 7 | dfss 3917 | . . 3 ⊢ (𝐵 ⊆ (Base‘𝑀) ↔ 𝐵 = (𝐵 ∩ (Base‘𝑀))) | |
| 8 | 6, 7 | mpbi 230 | . 2 ⊢ 𝐵 = (𝐵 ∩ (Base‘𝑀)) |
| 9 | snex 5376 | . . . . 5 ⊢ {𝐼} ∈ V | |
| 10 | ovex 7385 | . . . . . 6 ⊢ (0..^𝑁) ∈ V | |
| 11 | snex 5376 | . . . . . 6 ⊢ {(𝐺‘𝑛)} ∈ V | |
| 12 | 10, 11 | iunex 7906 | . . . . 5 ⊢ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} ∈ V |
| 13 | 9, 12 | unex 7683 | . . . 4 ⊢ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ∈ V |
| 14 | 5, 13 | eqeltri 2829 | . . 3 ⊢ 𝐵 ∈ V |
| 15 | smndex1mgm.s | . . . 4 ⊢ 𝑆 = (𝑀 ↾s 𝐵) | |
| 16 | eqid 2733 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 17 | 15, 16 | ressbas 17149 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∩ (Base‘𝑀)) = (Base‘𝑆)) |
| 18 | 14, 17 | ax-mp 5 | . 2 ⊢ (𝐵 ∩ (Base‘𝑀)) = (Base‘𝑆) |
| 19 | 8, 18 | eqtr2i 2757 | 1 ⊢ (Base‘𝑆) = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 {csn 4575 ∪ ciun 4941 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 0cc0 11013 ℕcn 12132 ℕ0cn0 12388 ..^cfzo 13556 mod cmo 13775 Basecbs 17122 ↾s cress 17143 EndoFMndcefmnd 18778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-tset 17182 df-efmnd 18779 |
| This theorem is referenced by: smndex1mgm 18817 smndex1sgrp 18818 smndex1mnd 18820 smndex1id 18821 |
| Copyright terms: Public domain | W3C validator |