| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfresmf | Structured version Visualization version GIF version | ||
| Description: A real-valued measurable function is a sigma-measurable function (w.r.t. the Lebesgue measure on the Reals). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| mbfresmf.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| mbfresmf.2 | ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| mbfresmf.3 | ⊢ 𝑆 = dom vol |
| Ref | Expression |
|---|---|
| mbfresmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 2 | mbfresmf.3 | . . . 4 ⊢ 𝑆 = dom vol | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑆 = dom vol) |
| 4 | dmvolsal 46506 | . . . 4 ⊢ dom vol ∈ SAlg | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → dom vol ∈ SAlg) |
| 6 | 3, 5 | eqeltrd 2833 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 7 | mbfresmf.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ MblFn) | |
| 8 | mbfdmssre 46160 | . . . 4 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ℝ) |
| 10 | 2 | unieqi 4872 | . . . 4 ⊢ ∪ 𝑆 = ∪ dom vol |
| 11 | unidmvol 25489 | . . . 4 ⊢ ∪ dom vol = ℝ | |
| 12 | 10, 11 | eqtri 2756 | . . 3 ⊢ ∪ 𝑆 = ℝ |
| 13 | 9, 12 | sseqtrrdi 3972 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 14 | mbff 25573 | . . . . 5 ⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) | |
| 15 | ffn 6659 | . . . . 5 ⊢ (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹) | |
| 16 | 7, 14, 15 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
| 17 | mbfresmf.2 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) | |
| 18 | 16, 17 | jca 511 | . . 3 ⊢ (𝜑 → (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ)) |
| 19 | df-f 6493 | . . 3 ⊢ (𝐹:dom 𝐹⟶ℝ ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ)) | |
| 20 | 18, 19 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹:dom 𝐹⟶ℝ) |
| 22 | rexr 11169 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
| 23 | 22 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
| 24 | 21, 23 | preimaioomnf 46879 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
| 25 | 24 | eqcomd 2739 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (◡𝐹 “ (-∞(,)𝑎))) |
| 26 | 4 | elexi 3460 | . . . . . 6 ⊢ dom vol ∈ V |
| 27 | 2, 26 | eqeltri 2829 | . . . . 5 ⊢ 𝑆 ∈ V |
| 28 | 27 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ V) |
| 29 | 7 | dmexd 7842 | . . . . 5 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → dom 𝐹 ∈ V) |
| 31 | mbfima 25578 | . . . . . . 7 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:dom 𝐹⟶ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ dom vol) | |
| 32 | 7, 20, 31 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝑎)) ∈ dom vol) |
| 33 | 32, 3 | eleqtrrd 2836 | . . . . 5 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝑎)) ∈ 𝑆) |
| 34 | 33 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ 𝑆) |
| 35 | cnvimass 6038 | . . . . 5 ⊢ (◡𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 | |
| 36 | dfss 3917 | . . . . . 6 ⊢ ((◡𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 ↔ (◡𝐹 “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹)) | |
| 37 | 36 | biimpi 216 | . . . . 5 ⊢ ((◡𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 → (◡𝐹 “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹)) |
| 38 | 35, 37 | ax-mp 5 | . . . 4 ⊢ (◡𝐹 “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹) |
| 39 | 28, 30, 34, 38 | elrestd 45268 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
| 40 | 25, 39 | eqeltrd 2833 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
| 41 | 1, 6, 13, 20, 40 | issmfd 46895 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 ∪ cuni 4860 class class class wbr 5095 ◡ccnv 5620 dom cdm 5621 ran crn 5622 “ cima 5624 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 ℝcr 11016 -∞cmnf 11155 ℝ*cxr 11156 < clt 11157 (,)cioo 13252 ↾t crest 17331 volcvol 25411 MblFncmbf 25562 SAlgcsalg 46468 SMblFncsmblfn 46855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cc 10337 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-oi 9407 df-dju 9805 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-q 12853 df-rp 12897 df-xadd 13018 df-ioo 13256 df-ico 13258 df-icc 13259 df-fz 13415 df-fzo 13562 df-fl 13703 df-seq 13916 df-exp 13976 df-hash 14245 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 df-rlim 15403 df-sum 15601 df-rest 17333 df-xmet 21293 df-met 21294 df-ovol 25412 df-vol 25413 df-mbf 25567 df-salg 46469 df-smblfn 46856 |
| This theorem is referenced by: mbfpsssmf 46943 |
| Copyright terms: Public domain | W3C validator |