| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfresmf | Structured version Visualization version GIF version | ||
| Description: A real-valued measurable function is a sigma-measurable function (w.r.t. the Lebesgue measure on the Reals). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| mbfresmf.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| mbfresmf.2 | ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| mbfresmf.3 | ⊢ 𝑆 = dom vol |
| Ref | Expression |
|---|---|
| mbfresmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 2 | mbfresmf.3 | . . . 4 ⊢ 𝑆 = dom vol | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑆 = dom vol) |
| 4 | dmvolsal 46344 | . . . 4 ⊢ dom vol ∈ SAlg | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → dom vol ∈ SAlg) |
| 6 | 3, 5 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 7 | mbfresmf.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ MblFn) | |
| 8 | mbfdmssre 45998 | . . . 4 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ℝ) |
| 10 | 2 | unieqi 4883 | . . . 4 ⊢ ∪ 𝑆 = ∪ dom vol |
| 11 | unidmvol 25442 | . . . 4 ⊢ ∪ dom vol = ℝ | |
| 12 | 10, 11 | eqtri 2752 | . . 3 ⊢ ∪ 𝑆 = ℝ |
| 13 | 9, 12 | sseqtrrdi 3988 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 14 | mbff 25526 | . . . . 5 ⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) | |
| 15 | ffn 6688 | . . . . 5 ⊢ (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹) | |
| 16 | 7, 14, 15 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
| 17 | mbfresmf.2 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) | |
| 18 | 16, 17 | jca 511 | . . 3 ⊢ (𝜑 → (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ)) |
| 19 | df-f 6515 | . . 3 ⊢ (𝐹:dom 𝐹⟶ℝ ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ)) | |
| 20 | 18, 19 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹:dom 𝐹⟶ℝ) |
| 22 | rexr 11220 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
| 23 | 22 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
| 24 | 21, 23 | preimaioomnf 46717 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
| 25 | 24 | eqcomd 2735 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (◡𝐹 “ (-∞(,)𝑎))) |
| 26 | 4 | elexi 3470 | . . . . . 6 ⊢ dom vol ∈ V |
| 27 | 2, 26 | eqeltri 2824 | . . . . 5 ⊢ 𝑆 ∈ V |
| 28 | 27 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ V) |
| 29 | 7 | dmexd 7879 | . . . . 5 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → dom 𝐹 ∈ V) |
| 31 | mbfima 25531 | . . . . . . 7 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:dom 𝐹⟶ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ dom vol) | |
| 32 | 7, 20, 31 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝑎)) ∈ dom vol) |
| 33 | 32, 3 | eleqtrrd 2831 | . . . . 5 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝑎)) ∈ 𝑆) |
| 34 | 33 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ 𝑆) |
| 35 | cnvimass 6053 | . . . . 5 ⊢ (◡𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 | |
| 36 | dfss 3933 | . . . . . 6 ⊢ ((◡𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 ↔ (◡𝐹 “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹)) | |
| 37 | 36 | biimpi 216 | . . . . 5 ⊢ ((◡𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 → (◡𝐹 “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹)) |
| 38 | 35, 37 | ax-mp 5 | . . . 4 ⊢ (◡𝐹 “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹) |
| 39 | 28, 30, 34, 38 | elrestd 45102 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
| 40 | 25, 39 | eqeltrd 2828 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
| 41 | 1, 6, 13, 20, 40 | issmfd 46733 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 ∪ cuni 4871 class class class wbr 5107 ◡ccnv 5637 dom cdm 5638 ran crn 5639 “ cima 5641 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 -∞cmnf 11206 ℝ*cxr 11207 < clt 11208 (,)cioo 13306 ↾t crest 17383 volcvol 25364 MblFncmbf 25515 SAlgcsalg 46306 SMblFncsmblfn 46693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xadd 13073 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-rest 17385 df-xmet 21257 df-met 21258 df-ovol 25365 df-vol 25366 df-mbf 25520 df-salg 46307 df-smblfn 46694 |
| This theorem is referenced by: mbfpsssmf 46781 |
| Copyright terms: Public domain | W3C validator |