![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfresmf | Structured version Visualization version GIF version |
Description: A real-valued measurable function is a sigma-measurable function (w.r.t. the Lebesgue measure on the Reals). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
mbfresmf.1 | β’ (π β πΉ β MblFn) |
mbfresmf.2 | β’ (π β ran πΉ β β) |
mbfresmf.3 | β’ π = dom vol |
Ref | Expression |
---|---|
mbfresmf | β’ (π β πΉ β (SMblFnβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 β’ β²ππ | |
2 | mbfresmf.3 | . . . 4 β’ π = dom vol | |
3 | 2 | a1i 11 | . . 3 β’ (π β π = dom vol) |
4 | dmvolsal 45141 | . . . 4 β’ dom vol β SAlg | |
5 | 4 | a1i 11 | . . 3 β’ (π β dom vol β SAlg) |
6 | 3, 5 | eqeltrd 2833 | . 2 β’ (π β π β SAlg) |
7 | mbfresmf.1 | . . . 4 β’ (π β πΉ β MblFn) | |
8 | mbfdmssre 44795 | . . . 4 β’ (πΉ β MblFn β dom πΉ β β) | |
9 | 7, 8 | syl 17 | . . 3 β’ (π β dom πΉ β β) |
10 | 2 | unieqi 4921 | . . . 4 β’ βͺ π = βͺ dom vol |
11 | unidmvol 25065 | . . . 4 β’ βͺ dom vol = β | |
12 | 10, 11 | eqtri 2760 | . . 3 β’ βͺ π = β |
13 | 9, 12 | sseqtrrdi 4033 | . 2 β’ (π β dom πΉ β βͺ π) |
14 | mbff 25149 | . . . . 5 β’ (πΉ β MblFn β πΉ:dom πΉβΆβ) | |
15 | ffn 6717 | . . . . 5 β’ (πΉ:dom πΉβΆβ β πΉ Fn dom πΉ) | |
16 | 7, 14, 15 | 3syl 18 | . . . 4 β’ (π β πΉ Fn dom πΉ) |
17 | mbfresmf.2 | . . . 4 β’ (π β ran πΉ β β) | |
18 | 16, 17 | jca 512 | . . 3 β’ (π β (πΉ Fn dom πΉ β§ ran πΉ β β)) |
19 | df-f 6547 | . . 3 β’ (πΉ:dom πΉβΆβ β (πΉ Fn dom πΉ β§ ran πΉ β β)) | |
20 | 18, 19 | sylibr 233 | . 2 β’ (π β πΉ:dom πΉβΆβ) |
21 | 20 | adantr 481 | . . . . 5 β’ ((π β§ π β β) β πΉ:dom πΉβΆβ) |
22 | rexr 11262 | . . . . . 6 β’ (π β β β π β β*) | |
23 | 22 | adantl 482 | . . . . 5 β’ ((π β§ π β β) β π β β*) |
24 | 21, 23 | preimaioomnf 45514 | . . . 4 β’ ((π β§ π β β) β (β‘πΉ β (-β(,)π)) = {π₯ β dom πΉ β£ (πΉβπ₯) < π}) |
25 | 24 | eqcomd 2738 | . . 3 β’ ((π β§ π β β) β {π₯ β dom πΉ β£ (πΉβπ₯) < π} = (β‘πΉ β (-β(,)π))) |
26 | 4 | elexi 3493 | . . . . . 6 β’ dom vol β V |
27 | 2, 26 | eqeltri 2829 | . . . . 5 β’ π β V |
28 | 27 | a1i 11 | . . . 4 β’ ((π β§ π β β) β π β V) |
29 | 7 | dmexd 7898 | . . . . 5 β’ (π β dom πΉ β V) |
30 | 29 | adantr 481 | . . . 4 β’ ((π β§ π β β) β dom πΉ β V) |
31 | mbfima 25154 | . . . . . . 7 β’ ((πΉ β MblFn β§ πΉ:dom πΉβΆβ) β (β‘πΉ β (-β(,)π)) β dom vol) | |
32 | 7, 20, 31 | syl2anc 584 | . . . . . 6 β’ (π β (β‘πΉ β (-β(,)π)) β dom vol) |
33 | 32, 3 | eleqtrrd 2836 | . . . . 5 β’ (π β (β‘πΉ β (-β(,)π)) β π) |
34 | 33 | adantr 481 | . . . 4 β’ ((π β§ π β β) β (β‘πΉ β (-β(,)π)) β π) |
35 | cnvimass 6080 | . . . . 5 β’ (β‘πΉ β (-β(,)π)) β dom πΉ | |
36 | dfss 3966 | . . . . . 6 β’ ((β‘πΉ β (-β(,)π)) β dom πΉ β (β‘πΉ β (-β(,)π)) = ((β‘πΉ β (-β(,)π)) β© dom πΉ)) | |
37 | 36 | biimpi 215 | . . . . 5 β’ ((β‘πΉ β (-β(,)π)) β dom πΉ β (β‘πΉ β (-β(,)π)) = ((β‘πΉ β (-β(,)π)) β© dom πΉ)) |
38 | 35, 37 | ax-mp 5 | . . . 4 β’ (β‘πΉ β (-β(,)π)) = ((β‘πΉ β (-β(,)π)) β© dom πΉ) |
39 | 28, 30, 34, 38 | elrestd 43879 | . . 3 β’ ((π β§ π β β) β (β‘πΉ β (-β(,)π)) β (π βΎt dom πΉ)) |
40 | 25, 39 | eqeltrd 2833 | . 2 β’ ((π β§ π β β) β {π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ)) |
41 | 1, 6, 13, 20, 40 | issmfd 45530 | 1 β’ (π β πΉ β (SMblFnβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 β© cin 3947 β wss 3948 βͺ cuni 4908 class class class wbr 5148 β‘ccnv 5675 dom cdm 5676 ran crn 5677 β cima 5679 Fn wfn 6538 βΆwf 6539 βcfv 6543 (class class class)co 7411 βcc 11110 βcr 11111 -βcmnf 11248 β*cxr 11249 < clt 11250 (,)cioo 13326 βΎt crest 17368 volcvol 24987 MblFncmbf 25138 SAlgcsalg 45103 SMblFncsmblfn 45490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-cc 10432 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-oi 9507 df-dju 9898 df-card 9936 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-div 11874 df-nn 12215 df-2 12277 df-3 12278 df-n0 12475 df-z 12561 df-uz 12825 df-q 12935 df-rp 12977 df-xadd 13095 df-ioo 13330 df-ico 13332 df-icc 13333 df-fz 13487 df-fzo 13630 df-fl 13759 df-seq 13969 df-exp 14030 df-hash 14293 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-clim 15434 df-rlim 15435 df-sum 15635 df-rest 17370 df-xmet 20943 df-met 20944 df-ovol 24988 df-vol 24989 df-mbf 25143 df-salg 45104 df-smblfn 45491 |
This theorem is referenced by: mbfpsssmf 45578 |
Copyright terms: Public domain | W3C validator |