![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfresmf | Structured version Visualization version GIF version |
Description: A real-valued measurable function is a sigma-measurable function (w.r.t. the Lebesgue measure on the Reals). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
mbfresmf.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
mbfresmf.2 | ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
mbfresmf.3 | ⊢ 𝑆 = dom vol |
Ref | Expression |
---|---|
mbfresmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1913 | . 2 ⊢ Ⅎ𝑎𝜑 | |
2 | mbfresmf.3 | . . . 4 ⊢ 𝑆 = dom vol | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑆 = dom vol) |
4 | dmvolsal 46267 | . . . 4 ⊢ dom vol ∈ SAlg | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → dom vol ∈ SAlg) |
6 | 3, 5 | eqeltrd 2844 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
7 | mbfresmf.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ MblFn) | |
8 | mbfdmssre 45921 | . . . 4 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ℝ) |
10 | 2 | unieqi 4943 | . . . 4 ⊢ ∪ 𝑆 = ∪ dom vol |
11 | unidmvol 25595 | . . . 4 ⊢ ∪ dom vol = ℝ | |
12 | 10, 11 | eqtri 2768 | . . 3 ⊢ ∪ 𝑆 = ℝ |
13 | 9, 12 | sseqtrrdi 4060 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
14 | mbff 25679 | . . . . 5 ⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) | |
15 | ffn 6747 | . . . . 5 ⊢ (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹) | |
16 | 7, 14, 15 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
17 | mbfresmf.2 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) | |
18 | 16, 17 | jca 511 | . . 3 ⊢ (𝜑 → (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ)) |
19 | df-f 6577 | . . 3 ⊢ (𝐹:dom 𝐹⟶ℝ ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ)) | |
20 | 18, 19 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹:dom 𝐹⟶ℝ) |
22 | rexr 11336 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
23 | 22 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
24 | 21, 23 | preimaioomnf 46640 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
25 | 24 | eqcomd 2746 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (◡𝐹 “ (-∞(,)𝑎))) |
26 | 4 | elexi 3511 | . . . . . 6 ⊢ dom vol ∈ V |
27 | 2, 26 | eqeltri 2840 | . . . . 5 ⊢ 𝑆 ∈ V |
28 | 27 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ V) |
29 | 7 | dmexd 7943 | . . . . 5 ⊢ (𝜑 → dom 𝐹 ∈ V) |
30 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → dom 𝐹 ∈ V) |
31 | mbfima 25684 | . . . . . . 7 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:dom 𝐹⟶ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ dom vol) | |
32 | 7, 20, 31 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝑎)) ∈ dom vol) |
33 | 32, 3 | eleqtrrd 2847 | . . . . 5 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝑎)) ∈ 𝑆) |
34 | 33 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ 𝑆) |
35 | cnvimass 6111 | . . . . 5 ⊢ (◡𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 | |
36 | dfss 3995 | . . . . . 6 ⊢ ((◡𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 ↔ (◡𝐹 “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹)) | |
37 | 36 | biimpi 216 | . . . . 5 ⊢ ((◡𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 → (◡𝐹 “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹)) |
38 | 35, 37 | ax-mp 5 | . . . 4 ⊢ (◡𝐹 “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹) |
39 | 28, 30, 34, 38 | elrestd 45010 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
40 | 25, 39 | eqeltrd 2844 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
41 | 1, 6, 13, 20, 40 | issmfd 46656 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∪ cuni 4931 class class class wbr 5166 ◡ccnv 5699 dom cdm 5700 ran crn 5701 “ cima 5703 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 -∞cmnf 11322 ℝ*cxr 11323 < clt 11324 (,)cioo 13407 ↾t crest 17480 volcvol 25517 MblFncmbf 25668 SAlgcsalg 46229 SMblFncsmblfn 46616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xadd 13176 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-rest 17482 df-xmet 21380 df-met 21381 df-ovol 25518 df-vol 25519 df-mbf 25673 df-salg 46230 df-smblfn 46617 |
This theorem is referenced by: mbfpsssmf 46704 |
Copyright terms: Public domain | W3C validator |