Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfresmf Structured version   Visualization version   GIF version

Theorem mbfresmf 46710
Description: A real-valued measurable function is a sigma-measurable function (w.r.t. the Lebesgue measure on the Reals). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
mbfresmf.1 (𝜑𝐹 ∈ MblFn)
mbfresmf.2 (𝜑 → ran 𝐹 ⊆ ℝ)
mbfresmf.3 𝑆 = dom vol
Assertion
Ref Expression
mbfresmf (𝜑𝐹 ∈ (SMblFn‘𝑆))

Proof of Theorem mbfresmf
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . 2 𝑎𝜑
2 mbfresmf.3 . . . 4 𝑆 = dom vol
32a1i 11 . . 3 (𝜑𝑆 = dom vol)
4 dmvolsal 46317 . . . 4 dom vol ∈ SAlg
54a1i 11 . . 3 (𝜑 → dom vol ∈ SAlg)
63, 5eqeltrd 2828 . 2 (𝜑𝑆 ∈ SAlg)
7 mbfresmf.1 . . . 4 (𝜑𝐹 ∈ MblFn)
8 mbfdmssre 45971 . . . 4 (𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ)
97, 8syl 17 . . 3 (𝜑 → dom 𝐹 ⊆ ℝ)
102unieqi 4879 . . . 4 𝑆 = dom vol
11 unidmvol 25418 . . . 4 dom vol = ℝ
1210, 11eqtri 2752 . . 3 𝑆 = ℝ
139, 12sseqtrrdi 3985 . 2 (𝜑 → dom 𝐹 𝑆)
14 mbff 25502 . . . . 5 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
15 ffn 6670 . . . . 5 (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹)
167, 14, 153syl 18 . . . 4 (𝜑𝐹 Fn dom 𝐹)
17 mbfresmf.2 . . . 4 (𝜑 → ran 𝐹 ⊆ ℝ)
1816, 17jca 511 . . 3 (𝜑 → (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ))
19 df-f 6503 . . 3 (𝐹:dom 𝐹⟶ℝ ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ))
2018, 19sylibr 234 . 2 (𝜑𝐹:dom 𝐹⟶ℝ)
2120adantr 480 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝐹:dom 𝐹⟶ℝ)
22 rexr 11196 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
2322adantl 481 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
2421, 23preimaioomnf 46690 . . . 4 ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) = {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎})
2524eqcomd 2735 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = (𝐹 “ (-∞(,)𝑎)))
264elexi 3467 . . . . . 6 dom vol ∈ V
272, 26eqeltri 2824 . . . . 5 𝑆 ∈ V
2827a1i 11 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ V)
297dmexd 7859 . . . . 5 (𝜑 → dom 𝐹 ∈ V)
3029adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → dom 𝐹 ∈ V)
31 mbfima 25507 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:dom 𝐹⟶ℝ) → (𝐹 “ (-∞(,)𝑎)) ∈ dom vol)
327, 20, 31syl2anc 584 . . . . . 6 (𝜑 → (𝐹 “ (-∞(,)𝑎)) ∈ dom vol)
3332, 3eleqtrrd 2831 . . . . 5 (𝜑 → (𝐹 “ (-∞(,)𝑎)) ∈ 𝑆)
3433adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) ∈ 𝑆)
35 cnvimass 6042 . . . . 5 (𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹
36 dfss 3930 . . . . . 6 ((𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 ↔ (𝐹 “ (-∞(,)𝑎)) = ((𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹))
3736biimpi 216 . . . . 5 ((𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 → (𝐹 “ (-∞(,)𝑎)) = ((𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹))
3835, 37ax-mp 5 . . . 4 (𝐹 “ (-∞(,)𝑎)) = ((𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹)
3928, 30, 34, 38elrestd 45075 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
4025, 39eqeltrd 2828 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
411, 6, 13, 20, 40issmfd 46706 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  cin 3910  wss 3911   cuni 4867   class class class wbr 5102  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  -∞cmnf 11182  *cxr 11183   < clt 11184  (,)cioo 13282  t crest 17359  volcvol 25340  MblFncmbf 25491  SAlgcsalg 46279  SMblFncsmblfn 46666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xadd 13049  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-rest 17361  df-xmet 21233  df-met 21234  df-ovol 25341  df-vol 25342  df-mbf 25496  df-salg 46280  df-smblfn 46667
This theorem is referenced by:  mbfpsssmf  46754
  Copyright terms: Public domain W3C validator