| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfresmf | Structured version Visualization version GIF version | ||
| Description: A real-valued measurable function is a sigma-measurable function (w.r.t. the Lebesgue measure on the Reals). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| mbfresmf.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| mbfresmf.2 | ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| mbfresmf.3 | ⊢ 𝑆 = dom vol |
| Ref | Expression |
|---|---|
| mbfresmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 2 | mbfresmf.3 | . . . 4 ⊢ 𝑆 = dom vol | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑆 = dom vol) |
| 4 | dmvolsal 46323 | . . . 4 ⊢ dom vol ∈ SAlg | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → dom vol ∈ SAlg) |
| 6 | 3, 5 | eqeltrd 2834 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 7 | mbfresmf.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ MblFn) | |
| 8 | mbfdmssre 45977 | . . . 4 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ℝ) |
| 10 | 2 | unieqi 4895 | . . . 4 ⊢ ∪ 𝑆 = ∪ dom vol |
| 11 | unidmvol 25492 | . . . 4 ⊢ ∪ dom vol = ℝ | |
| 12 | 10, 11 | eqtri 2758 | . . 3 ⊢ ∪ 𝑆 = ℝ |
| 13 | 9, 12 | sseqtrrdi 4000 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 14 | mbff 25576 | . . . . 5 ⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) | |
| 15 | ffn 6705 | . . . . 5 ⊢ (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹) | |
| 16 | 7, 14, 15 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
| 17 | mbfresmf.2 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) | |
| 18 | 16, 17 | jca 511 | . . 3 ⊢ (𝜑 → (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ)) |
| 19 | df-f 6534 | . . 3 ⊢ (𝐹:dom 𝐹⟶ℝ ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ)) | |
| 20 | 18, 19 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹:dom 𝐹⟶ℝ) |
| 22 | rexr 11279 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
| 23 | 22 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
| 24 | 21, 23 | preimaioomnf 46696 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) = {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎}) |
| 25 | 24 | eqcomd 2741 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = (◡𝐹 “ (-∞(,)𝑎))) |
| 26 | 4 | elexi 3482 | . . . . . 6 ⊢ dom vol ∈ V |
| 27 | 2, 26 | eqeltri 2830 | . . . . 5 ⊢ 𝑆 ∈ V |
| 28 | 27 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ V) |
| 29 | 7 | dmexd 7897 | . . . . 5 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → dom 𝐹 ∈ V) |
| 31 | mbfima 25581 | . . . . . . 7 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:dom 𝐹⟶ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ dom vol) | |
| 32 | 7, 20, 31 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝑎)) ∈ dom vol) |
| 33 | 32, 3 | eleqtrrd 2837 | . . . . 5 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝑎)) ∈ 𝑆) |
| 34 | 33 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ 𝑆) |
| 35 | cnvimass 6069 | . . . . 5 ⊢ (◡𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 | |
| 36 | dfss 3945 | . . . . . 6 ⊢ ((◡𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 ↔ (◡𝐹 “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹)) | |
| 37 | 36 | biimpi 216 | . . . . 5 ⊢ ((◡𝐹 “ (-∞(,)𝑎)) ⊆ dom 𝐹 → (◡𝐹 “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹)) |
| 38 | 35, 37 | ax-mp 5 | . . . 4 ⊢ (◡𝐹 “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ dom 𝐹) |
| 39 | 28, 30, 34, 38 | elrestd 45080 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
| 40 | 25, 39 | eqeltrd 2834 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
| 41 | 1, 6, 13, 20, 40 | issmfd 46712 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 ∪ cuni 4883 class class class wbr 5119 ◡ccnv 5653 dom cdm 5654 ran crn 5655 “ cima 5657 Fn wfn 6525 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 ℝcr 11126 -∞cmnf 11265 ℝ*cxr 11266 < clt 11267 (,)cioo 13360 ↾t crest 17432 volcvol 25414 MblFncmbf 25565 SAlgcsalg 46285 SMblFncsmblfn 46672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cc 10447 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-oi 9522 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-q 12963 df-rp 13007 df-xadd 13127 df-ioo 13364 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-fl 13807 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-rlim 15503 df-sum 15701 df-rest 17434 df-xmet 21306 df-met 21307 df-ovol 25415 df-vol 25416 df-mbf 25570 df-salg 46286 df-smblfn 46673 |
| This theorem is referenced by: mbfpsssmf 46760 |
| Copyright terms: Public domain | W3C validator |