Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem93 Structured version   Visualization version   GIF version

Theorem fourierdlem93 43630
Description: Integral by substitution (the domain is shifted by 𝑋) for a piecewise continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem93.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem93.2 𝐻 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) − 𝑋))
fourierdlem93.3 (𝜑𝑀 ∈ ℕ)
fourierdlem93.4 (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem93.5 (𝜑𝑋 ∈ ℝ)
fourierdlem93.6 (𝜑𝐹:(-π[,]π)⟶ℂ)
fourierdlem93.7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem93.8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem93.9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem93 (𝜑 → ∫(-π[,]π)(𝐹𝑡) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠)
Distinct variable groups:   𝑖,𝐹,𝑠,𝑡   𝑖,𝐻,𝑠,𝑡   𝑡,𝐿   𝑖,𝑀,𝑚,𝑝   𝑀,𝑠,𝑡   𝑄,𝑖,𝑝   𝑄,𝑠,𝑡   𝑡,𝑅   𝑖,𝑋,𝑠,𝑡   𝜑,𝑖,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑡,𝑖,𝑚,𝑠,𝑝)   𝑄(𝑚)   𝑅(𝑖,𝑚,𝑠,𝑝)   𝐹(𝑚,𝑝)   𝐻(𝑚,𝑝)   𝐿(𝑖,𝑚,𝑠,𝑝)   𝑋(𝑚,𝑝)

Proof of Theorem fourierdlem93
Dummy variables 𝑟 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem93.4 . . . . . . . 8 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem93.3 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
3 fourierdlem93.1 . . . . . . . . . 10 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 43540 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . . 8 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 231 . . . . . . 7 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simprd 495 . . . . . 6 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
87simplld 764 . . . . 5 (𝜑 → (𝑄‘0) = -π)
98eqcomd 2744 . . . 4 (𝜑 → -π = (𝑄‘0))
107simplrd 766 . . . . 5 (𝜑 → (𝑄𝑀) = π)
1110eqcomd 2744 . . . 4 (𝜑 → π = (𝑄𝑀))
129, 11oveq12d 7273 . . 3 (𝜑 → (-π[,]π) = ((𝑄‘0)[,](𝑄𝑀)))
1312itgeq1d 43388 . 2 (𝜑 → ∫(-π[,]π)(𝐹𝑡) d𝑡 = ∫((𝑄‘0)[,](𝑄𝑀))(𝐹𝑡) d𝑡)
14 0zd 12261 . . 3 (𝜑 → 0 ∈ ℤ)
15 nnuz 12550 . . . . 5 ℕ = (ℤ‘1)
162, 15eleqtrdi 2849 . . . 4 (𝜑𝑀 ∈ (ℤ‘1))
17 1e0p1 12408 . . . . . 6 1 = (0 + 1)
1817a1i 11 . . . . 5 (𝜑 → 1 = (0 + 1))
1918fveq2d 6760 . . . 4 (𝜑 → (ℤ‘1) = (ℤ‘(0 + 1)))
2016, 19eleqtrd 2841 . . 3 (𝜑𝑀 ∈ (ℤ‘(0 + 1)))
213, 2, 1fourierdlem15 43553 . . . 4 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
22 pire 25520 . . . . . . 7 π ∈ ℝ
2322renegcli 11212 . . . . . 6 -π ∈ ℝ
24 iccssre 13090 . . . . . 6 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
2523, 22, 24mp2an 688 . . . . 5 (-π[,]π) ⊆ ℝ
2625a1i 11 . . . 4 (𝜑 → (-π[,]π) ⊆ ℝ)
2721, 26fssd 6602 . . 3 (𝜑𝑄:(0...𝑀)⟶ℝ)
287simprd 495 . . . 4 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
2928r19.21bi 3132 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
30 fourierdlem93.6 . . . . 5 (𝜑𝐹:(-π[,]π)⟶ℂ)
3130adantr 480 . . . 4 ((𝜑𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝐹:(-π[,]π)⟶ℂ)
32 simpr 484 . . . . 5 ((𝜑𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀)))
3312eqcomd 2744 . . . . . 6 (𝜑 → ((𝑄‘0)[,](𝑄𝑀)) = (-π[,]π))
3433adantr 480 . . . . 5 ((𝜑𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀))) → ((𝑄‘0)[,](𝑄𝑀)) = (-π[,]π))
3532, 34eleqtrd 2841 . . . 4 ((𝜑𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑡 ∈ (-π[,]π))
3631, 35ffvelrnd 6944 . . 3 ((𝜑𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀))) → (𝐹𝑡) ∈ ℂ)
3727adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
38 elfzofz 13331 . . . . . 6 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
3938adantl 481 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
4037, 39ffvelrnd 6944 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
41 fzofzp1 13412 . . . . . 6 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
4241adantl 481 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
4337, 42ffvelrnd 6944 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
4430feqmptd 6819 . . . . . . . . . 10 (𝜑𝐹 = (𝑡 ∈ (-π[,]π) ↦ (𝐹𝑡)))
4544adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹 = (𝑡 ∈ (-π[,]π) ↦ (𝐹𝑡)))
4645reseq1d 5879 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑡 ∈ (-π[,]π) ↦ (𝐹𝑡)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
47 ioossicc 13094 . . . . . . . . . . 11 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
4847a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
4923rexri 10964 . . . . . . . . . . . . . 14 -π ∈ ℝ*
5049a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → -π ∈ ℝ*)
5122rexri 10964 . . . . . . . . . . . . . 14 π ∈ ℝ*
5251a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → π ∈ ℝ*)
5321ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(-π[,]π))
54 simplr 765 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀))
55 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
5650, 52, 53, 54, 55fourierdlem1 43539 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑡 ∈ (-π[,]π))
5756ralrimiva 3107 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))𝑡 ∈ (-π[,]π))
58 dfss3 3905 . . . . . . . . . . 11 (((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π) ↔ ∀𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))𝑡 ∈ (-π[,]π))
5957, 58sylibr 233 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
6048, 59sstrd 3927 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
6160resmptd 5937 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (-π[,]π) ↦ (𝐹𝑡)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)))
6246, 61eqtrd 2778 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)))
6362eqcomd 2744 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
64 fourierdlem93.7 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
6563, 64eqeltrd 2839 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
66 fourierdlem93.9 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
6762oveq1d 7270 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) lim (𝑄‘(𝑖 + 1))))
6866, 67eleqtrd 2841 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) lim (𝑄‘(𝑖 + 1))))
69 fourierdlem93.8 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
7062oveq1d 7270 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) lim (𝑄𝑖)))
7169, 70eleqtrd 2841 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) lim (𝑄𝑖)))
7240, 43, 65, 68, 71iblcncfioo 43409 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) ∈ 𝐿1)
7330ad2antrr 722 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐹:(-π[,]π)⟶ℂ)
7473, 56ffvelrnd 6944 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹𝑡) ∈ ℂ)
7540, 43, 72, 74ibliooicc 43402 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) ∈ 𝐿1)
7614, 20, 27, 29, 36, 75itgspltprt 43410 . 2 (𝜑 → ∫((𝑄‘0)[,](𝑄𝑀))(𝐹𝑡) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹𝑡) d𝑡)
77 fvres 6775 . . . . . . . 8 (𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡) = (𝐹𝑡))
7877eqcomd 2744 . . . . . . 7 (𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) → (𝐹𝑡) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡))
7978adantl 481 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹𝑡) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡))
8079itgeq2dv 24851 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹𝑡) d𝑡 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡) d𝑡)
81 eqid 2738 . . . . . 6 (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))))
8230adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:(-π[,]π)⟶ℂ)
8382, 59fssresd 6625 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))):((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ)
8448resabs1d 5911 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
8584, 64eqeltrd 2839 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
8684oveq1d 7270 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
8740, 43, 29, 83limcicciooub 43068 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
8886, 87eqtr3d 2780 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
8966, 88eleqtrd 2841 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
9084eqcomd 2744 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
9190oveq1d 7270 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = (((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
9240, 43, 29, 83limciccioolb 43052 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
9391, 92eqtrd 2778 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
9469, 93eleqtrd 2841 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
95 fourierdlem93.5 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
9695adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
9781, 40, 43, 29, 83, 85, 89, 94, 96fourierdlem82 43619 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡) d𝑡 = ∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) d𝑡)
9840adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑄𝑖) ∈ ℝ)
9943adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
10095ad2antrr 722 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑋 ∈ ℝ)
10198, 100resubcld 11333 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝑄𝑖) − 𝑋) ∈ ℝ)
10299, 100resubcld 11333 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
103 simpr 484 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋)))
104 eliccre 42933 . . . . . . . . . 10 ((((𝑄𝑖) − 𝑋) ∈ ℝ ∧ ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑡 ∈ ℝ)
105101, 102, 103, 104syl3anc 1369 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑡 ∈ ℝ)
106100, 105readdcld 10935 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑋 + 𝑡) ∈ ℝ)
107 elicc2 13073 . . . . . . . . . . . 12 ((((𝑄𝑖) − 𝑋) ∈ ℝ ∧ ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ) → (𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋)) ↔ (𝑡 ∈ ℝ ∧ ((𝑄𝑖) − 𝑋) ≤ 𝑡𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋))))
108101, 102, 107syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋)) ↔ (𝑡 ∈ ℝ ∧ ((𝑄𝑖) − 𝑋) ≤ 𝑡𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋))))
109103, 108mpbid 231 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑡 ∈ ℝ ∧ ((𝑄𝑖) − 𝑋) ≤ 𝑡𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋)))
110109simp2d 1141 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝑄𝑖) − 𝑋) ≤ 𝑡)
11198, 100, 105lesubadd2d 11504 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (((𝑄𝑖) − 𝑋) ≤ 𝑡 ↔ (𝑄𝑖) ≤ (𝑋 + 𝑡)))
112110, 111mpbid 231 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑄𝑖) ≤ (𝑋 + 𝑡))
113109simp3d 1142 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋))
114100, 105, 99leaddsub2d 11507 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝑋 + 𝑡) ≤ (𝑄‘(𝑖 + 1)) ↔ 𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋)))
115113, 114mpbird 256 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑋 + 𝑡) ≤ (𝑄‘(𝑖 + 1)))
11698, 99, 106, 112, 115eliccd 42932 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑋 + 𝑡) ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
117 fvres 6775 . . . . . . 7 ((𝑋 + 𝑡) ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡)))
118116, 117syl 17 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡)))
119118itgeq2dv 24851 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) d𝑡 = ∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
12080, 97, 1193eqtrd 2782 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹𝑡) d𝑡 = ∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
121120sumeq2dv 15343 . . 3 (𝜑 → Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹𝑡) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
122 oveq2 7263 . . . . . . 7 (𝑠 = 𝑡 → (𝑋 + 𝑠) = (𝑋 + 𝑡))
123122fveq2d 6760 . . . . . 6 (𝑠 = 𝑡 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑡)))
124123cbvitgv 24846 . . . . 5 ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡
125124a1i 11 . . . 4 (𝜑 → ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
126 fourierdlem93.2 . . . . . . . . 9 𝐻 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) − 𝑋))
127126a1i 11 . . . . . . . 8 (𝜑𝐻 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) − 𝑋)))
128 fveq2 6756 . . . . . . . . . 10 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
129128oveq1d 7270 . . . . . . . . 9 (𝑖 = 0 → ((𝑄𝑖) − 𝑋) = ((𝑄‘0) − 𝑋))
130129adantl 481 . . . . . . . 8 ((𝜑𝑖 = 0) → ((𝑄𝑖) − 𝑋) = ((𝑄‘0) − 𝑋))
1312nnzd 12354 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
132 0le0 12004 . . . . . . . . . 10 0 ≤ 0
133132a1i 11 . . . . . . . . 9 (𝜑 → 0 ≤ 0)
134 0red 10909 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
1352nnred 11918 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
1362nngt0d 11952 . . . . . . . . . 10 (𝜑 → 0 < 𝑀)
137134, 135, 136ltled 11053 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑀)
13814, 131, 14, 133, 137elfzd 13176 . . . . . . . 8 (𝜑 → 0 ∈ (0...𝑀))
1398, 23eqeltrdi 2847 . . . . . . . . 9 (𝜑 → (𝑄‘0) ∈ ℝ)
140139, 95resubcld 11333 . . . . . . . 8 (𝜑 → ((𝑄‘0) − 𝑋) ∈ ℝ)
141127, 130, 138, 140fvmptd 6864 . . . . . . 7 (𝜑 → (𝐻‘0) = ((𝑄‘0) − 𝑋))
1428oveq1d 7270 . . . . . . 7 (𝜑 → ((𝑄‘0) − 𝑋) = (-π − 𝑋))
143141, 142eqtr2d 2779 . . . . . 6 (𝜑 → (-π − 𝑋) = (𝐻‘0))
144 fveq2 6756 . . . . . . . . . 10 (𝑖 = 𝑀 → (𝑄𝑖) = (𝑄𝑀))
145144oveq1d 7270 . . . . . . . . 9 (𝑖 = 𝑀 → ((𝑄𝑖) − 𝑋) = ((𝑄𝑀) − 𝑋))
146145adantl 481 . . . . . . . 8 ((𝜑𝑖 = 𝑀) → ((𝑄𝑖) − 𝑋) = ((𝑄𝑀) − 𝑋))
147135leidd 11471 . . . . . . . . 9 (𝜑𝑀𝑀)
14814, 131, 131, 137, 147elfzd 13176 . . . . . . . 8 (𝜑𝑀 ∈ (0...𝑀))
14910, 22eqeltrdi 2847 . . . . . . . . 9 (𝜑 → (𝑄𝑀) ∈ ℝ)
150149, 95resubcld 11333 . . . . . . . 8 (𝜑 → ((𝑄𝑀) − 𝑋) ∈ ℝ)
151127, 146, 148, 150fvmptd 6864 . . . . . . 7 (𝜑 → (𝐻𝑀) = ((𝑄𝑀) − 𝑋))
15210oveq1d 7270 . . . . . . 7 (𝜑 → ((𝑄𝑀) − 𝑋) = (π − 𝑋))
153151, 152eqtr2d 2779 . . . . . 6 (𝜑 → (π − 𝑋) = (𝐻𝑀))
154143, 153oveq12d 7273 . . . . 5 (𝜑 → ((-π − 𝑋)[,](π − 𝑋)) = ((𝐻‘0)[,](𝐻𝑀)))
155154itgeq1d 43388 . . . 4 (𝜑 → ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡 = ∫((𝐻‘0)[,](𝐻𝑀))(𝐹‘(𝑋 + 𝑡)) d𝑡)
15627ffvelrnda 6943 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
15795adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ)
158156, 157resubcld 11333 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑄𝑖) − 𝑋) ∈ ℝ)
159158, 126fmptd 6970 . . . . . 6 (𝜑𝐻:(0...𝑀)⟶ℝ)
16040, 43, 96, 29ltsub1dd 11517 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − 𝑋) < ((𝑄‘(𝑖 + 1)) − 𝑋))
16139, 158syldan 590 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − 𝑋) ∈ ℝ)
162126fvmpt2 6868 . . . . . . . 8 ((𝑖 ∈ (0...𝑀) ∧ ((𝑄𝑖) − 𝑋) ∈ ℝ) → (𝐻𝑖) = ((𝑄𝑖) − 𝑋))
16339, 161, 162syl2anc 583 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻𝑖) = ((𝑄𝑖) − 𝑋))
164 fveq2 6756 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
165164oveq1d 7270 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑄𝑖) − 𝑋) = ((𝑄𝑗) − 𝑋))
166165cbvmptv 5183 . . . . . . . . . 10 (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) − 𝑋))
167126, 166eqtri 2766 . . . . . . . . 9 𝐻 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) − 𝑋))
168167a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐻 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) − 𝑋)))
169 fveq2 6756 . . . . . . . . . 10 (𝑗 = (𝑖 + 1) → (𝑄𝑗) = (𝑄‘(𝑖 + 1)))
170169oveq1d 7270 . . . . . . . . 9 (𝑗 = (𝑖 + 1) → ((𝑄𝑗) − 𝑋) = ((𝑄‘(𝑖 + 1)) − 𝑋))
171170adantl 481 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑄𝑗) − 𝑋) = ((𝑄‘(𝑖 + 1)) − 𝑋))
17243, 96resubcld 11333 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
173168, 171, 42, 172fvmptd 6864 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) = ((𝑄‘(𝑖 + 1)) − 𝑋))
174160, 163, 1733brtr4d 5102 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻𝑖) < (𝐻‘(𝑖 + 1)))
175 frn 6591 . . . . . . . . 9 (𝐹:(-π[,]π)⟶ℂ → ran 𝐹 ⊆ ℂ)
17630, 175syl 17 . . . . . . . 8 (𝜑 → ran 𝐹 ⊆ ℂ)
177176adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → ran 𝐹 ⊆ ℂ)
178 ffun 6587 . . . . . . . . . 10 (𝐹:(-π[,]π)⟶ℂ → Fun 𝐹)
17930, 178syl 17 . . . . . . . . 9 (𝜑 → Fun 𝐹)
180179adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → Fun 𝐹)
18123a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → -π ∈ ℝ)
18222a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → π ∈ ℝ)
18395adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → 𝑋 ∈ ℝ)
184141, 140eqeltrd 2839 . . . . . . . . . . . . 13 (𝜑 → (𝐻‘0) ∈ ℝ)
185184adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝐻‘0) ∈ ℝ)
186151, 150eqeltrd 2839 . . . . . . . . . . . . 13 (𝜑 → (𝐻𝑀) ∈ ℝ)
187186adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝐻𝑀) ∈ ℝ)
188 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → 𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀)))
189 eliccre 42933 . . . . . . . . . . . 12 (((𝐻‘0) ∈ ℝ ∧ (𝐻𝑀) ∈ ℝ ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → 𝑡 ∈ ℝ)
190185, 187, 188, 189syl3anc 1369 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → 𝑡 ∈ ℝ)
191183, 190readdcld 10935 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝑋 + 𝑡) ∈ ℝ)
192128adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 = 0) → (𝑄𝑖) = (𝑄‘0))
193192oveq1d 7270 . . . . . . . . . . . . . . 15 ((𝜑𝑖 = 0) → ((𝑄𝑖) − 𝑋) = ((𝑄‘0) − 𝑋))
194127, 193, 138, 140fvmptd 6864 . . . . . . . . . . . . . 14 (𝜑 → (𝐻‘0) = ((𝑄‘0) − 𝑋))
195194oveq2d 7271 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + (𝐻‘0)) = (𝑋 + ((𝑄‘0) − 𝑋)))
19695recnd 10934 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℂ)
197139recnd 10934 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘0) ∈ ℂ)
198196, 197pncan3d 11265 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + ((𝑄‘0) − 𝑋)) = (𝑄‘0))
199195, 198, 83eqtrrd 2783 . . . . . . . . . . . 12 (𝜑 → -π = (𝑋 + (𝐻‘0)))
200199adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → -π = (𝑋 + (𝐻‘0)))
201 elicc2 13073 . . . . . . . . . . . . . . 15 (((𝐻‘0) ∈ ℝ ∧ (𝐻𝑀) ∈ ℝ) → (𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀)) ↔ (𝑡 ∈ ℝ ∧ (𝐻‘0) ≤ 𝑡𝑡 ≤ (𝐻𝑀))))
202185, 187, 201syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀)) ↔ (𝑡 ∈ ℝ ∧ (𝐻‘0) ≤ 𝑡𝑡 ≤ (𝐻𝑀))))
203188, 202mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝑡 ∈ ℝ ∧ (𝐻‘0) ≤ 𝑡𝑡 ≤ (𝐻𝑀)))
204203simp2d 1141 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝐻‘0) ≤ 𝑡)
205185, 190, 183, 204leadd2dd 11520 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝑋 + (𝐻‘0)) ≤ (𝑋 + 𝑡))
206200, 205eqbrtrd 5092 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → -π ≤ (𝑋 + 𝑡))
207203simp3d 1142 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → 𝑡 ≤ (𝐻𝑀))
208190, 187, 183, 207leadd2dd 11520 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝑋 + 𝑡) ≤ (𝑋 + (𝐻𝑀)))
209151oveq2d 7271 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + (𝐻𝑀)) = (𝑋 + ((𝑄𝑀) − 𝑋)))
210149recnd 10934 . . . . . . . . . . . . . 14 (𝜑 → (𝑄𝑀) ∈ ℂ)
211196, 210pncan3d 11265 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + ((𝑄𝑀) − 𝑋)) = (𝑄𝑀))
212209, 211, 103eqtrrd 2783 . . . . . . . . . . . 12 (𝜑 → π = (𝑋 + (𝐻𝑀)))
213212adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → π = (𝑋 + (𝐻𝑀)))
214208, 213breqtrrd 5098 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝑋 + 𝑡) ≤ π)
215181, 182, 191, 206, 214eliccd 42932 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝑋 + 𝑡) ∈ (-π[,]π))
216 fdm 6593 . . . . . . . . . . . 12 (𝐹:(-π[,]π)⟶ℂ → dom 𝐹 = (-π[,]π))
21730, 216syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = (-π[,]π))
218217eqcomd 2744 . . . . . . . . . 10 (𝜑 → (-π[,]π) = dom 𝐹)
219218adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (-π[,]π) = dom 𝐹)
220215, 219eleqtrd 2841 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝑋 + 𝑡) ∈ dom 𝐹)
221 fvelrn 6936 . . . . . . . 8 ((Fun 𝐹 ∧ (𝑋 + 𝑡) ∈ dom 𝐹) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹)
222180, 220, 221syl2anc 583 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹)
223177, 222sseldd 3918 . . . . . 6 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝐹‘(𝑋 + 𝑡)) ∈ ℂ)
224163, 161eqeltrd 2839 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻𝑖) ∈ ℝ)
225173, 172eqeltrd 2839 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) ∈ ℝ)
22682, 60fssresd 6625 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
22740rexrd 10956 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
228227adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ*)
22943rexrd 10956 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
230229adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
23195ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
232 elioore 13038 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) → 𝑡 ∈ ℝ)
233232adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑡 ∈ ℝ)
234231, 233readdcld 10935 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) ∈ ℝ)
235163oveq2d 7271 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝐻𝑖)) = (𝑋 + ((𝑄𝑖) − 𝑋)))
236196adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
23740recnd 10934 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
238236, 237pncan3d 11265 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + ((𝑄𝑖) − 𝑋)) = (𝑄𝑖))
239 eqidd 2739 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = (𝑄𝑖))
240235, 238, 2393eqtrrd 2783 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = (𝑋 + (𝐻𝑖)))
241240adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑄𝑖) = (𝑋 + (𝐻𝑖)))
242224adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻𝑖) ∈ ℝ)
243 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))))
244242rexrd 10956 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻𝑖) ∈ ℝ*)
245225rexrd 10956 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) ∈ ℝ*)
246245adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻‘(𝑖 + 1)) ∈ ℝ*)
247 elioo2 13049 . . . . . . . . . . . . . . . . . 18 (((𝐻𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ*) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↔ (𝑡 ∈ ℝ ∧ (𝐻𝑖) < 𝑡𝑡 < (𝐻‘(𝑖 + 1)))))
248244, 246, 247syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↔ (𝑡 ∈ ℝ ∧ (𝐻𝑖) < 𝑡𝑡 < (𝐻‘(𝑖 + 1)))))
249243, 248mpbid 231 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑡 ∈ ℝ ∧ (𝐻𝑖) < 𝑡𝑡 < (𝐻‘(𝑖 + 1))))
250249simp2d 1141 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻𝑖) < 𝑡)
251242, 233, 231, 250ltadd2dd 11064 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + (𝐻𝑖)) < (𝑋 + 𝑡))
252241, 251eqbrtrd 5092 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑄𝑖) < (𝑋 + 𝑡))
253225adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻‘(𝑖 + 1)) ∈ ℝ)
254249simp3d 1142 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑡 < (𝐻‘(𝑖 + 1)))
255233, 253, 231, 254ltadd2dd 11064 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) < (𝑋 + (𝐻‘(𝑖 + 1))))
256173oveq2d 7271 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝐻‘(𝑖 + 1))) = (𝑋 + ((𝑄‘(𝑖 + 1)) − 𝑋)))
25743recnd 10934 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
258236, 257pncan3d 11265 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + ((𝑄‘(𝑖 + 1)) − 𝑋)) = (𝑄‘(𝑖 + 1)))
259256, 258eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝐻‘(𝑖 + 1))) = (𝑄‘(𝑖 + 1)))
260259adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + (𝐻‘(𝑖 + 1))) = (𝑄‘(𝑖 + 1)))
261255, 260breqtrd 5096 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) < (𝑄‘(𝑖 + 1)))
262228, 230, 234, 252, 261eliood 42926 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
263 eqid 2738 . . . . . . . . . . . 12 (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) = (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))
264262, 263fmptd 6970 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)):((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))⟶((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
265 fcompt 6987 . . . . . . . . . . 11 (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ∧ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)):((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))⟶((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) = (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))))
266226, 264, 265syl2anc 583 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) = (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))))
267 oveq2 7263 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑟 → (𝑋 + 𝑡) = (𝑋 + 𝑟))
268267cbvmptv 5183 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) = (𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))
269268fveq1i 6757 . . . . . . . . . . . . . 14 ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠) = ((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠)
270269fveq2i 6759 . . . . . . . . . . . . 13 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠))
271270mpteq2i 5175 . . . . . . . . . . . 12 (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠)))
272271a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠))))
273 fveq2 6756 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → ((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠) = ((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡))
274273fveq2d 6760 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡)))
275274cbvmptv 5183 . . . . . . . . . . . 12 (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠))) = (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡)))
276275a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠))) = (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡))))
277 eqidd 2739 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟)) = (𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟)))
278 oveq2 7263 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑡 → (𝑋 + 𝑟) = (𝑋 + 𝑡))
279278adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) ∧ 𝑟 = 𝑡) → (𝑋 + 𝑟) = (𝑋 + 𝑡))
280277, 279, 243, 234fvmptd 6864 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → ((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡) = (𝑋 + 𝑡))
281280fveq2d 6760 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)))
282 fvres 6775 . . . . . . . . . . . . . 14 ((𝑋 + 𝑡) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡)))
283262, 282syl 17 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡)))
284281, 283eqtrd 2778 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡)) = (𝐹‘(𝑋 + 𝑡)))
285284mpteq2dva 5170 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡))) = (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))))
286272, 276, 2853eqtrd 2782 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))))
287266, 286eqtr2d 2779 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))))
288 eqid 2738 . . . . . . . . . . 11 (𝑡 ∈ ℂ ↦ (𝑋 + 𝑡)) = (𝑡 ∈ ℂ ↦ (𝑋 + 𝑡))
289 ssid 3939 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
290289a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → ℂ ⊆ ℂ)
291 id 22 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
292290, 291, 290constcncfg 43303 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑋) ∈ (ℂ–cn→ℂ))
293 cncfmptid 23982 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ))
294289, 289, 293mp2an 688 . . . . . . . . . . . . . 14 (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)
295294a1i 11 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ))
296292, 295addcncf 24513 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ (𝑋 + 𝑡)) ∈ (ℂ–cn→ℂ))
297236, 296syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ℂ ↦ (𝑋 + 𝑡)) ∈ (ℂ–cn→ℂ))
298 ioosscn 13070 . . . . . . . . . . . 12 ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ⊆ ℂ
299298a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ⊆ ℂ)
300 ioosscn 13070 . . . . . . . . . . . 12 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ
301300a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
302288, 297, 299, 301, 262cncfmptssg 43302 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))–cn→((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
303302, 64cncfco 23976 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))–cn→ℂ))
304287, 303eqeltrd 2839 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))–cn→ℂ))
305227adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑄𝑖) ∈ ℝ*)
306229adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
307 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)))
308 vex 3426 . . . . . . . . . . . . . . . . . 18 𝑟 ∈ V
309263elrnmpt 5854 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ V → (𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ↔ ∃𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡)))
310308, 309ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ↔ ∃𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡))
311307, 310sylib 217 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ∃𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡))
312 nfv 1918 . . . . . . . . . . . . . . . . . 18 𝑡(𝜑𝑖 ∈ (0..^𝑀))
313 nfmpt1 5178 . . . . . . . . . . . . . . . . . . . 20 𝑡(𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))
314313nfrn 5850 . . . . . . . . . . . . . . . . . . 19 𝑡ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))
315314nfcri 2893 . . . . . . . . . . . . . . . . . 18 𝑡 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))
316312, 315nfan 1903 . . . . . . . . . . . . . . . . 17 𝑡((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)))
317 nfv 1918 . . . . . . . . . . . . . . . . 17 𝑡 𝑟 ∈ ℝ
318 simp3 1136 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑟 = (𝑋 + 𝑡))
319953ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑋 ∈ ℝ)
3202323ad2ant2 1132 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑡 ∈ ℝ)
321319, 320readdcld 10935 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → (𝑋 + 𝑡) ∈ ℝ)
322318, 321eqeltrd 2839 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑟 ∈ ℝ)
3233223exp 1117 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → 𝑟 ∈ ℝ)))
324323ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → 𝑟 ∈ ℝ)))
325316, 317, 324rexlimd 3245 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (∃𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡) → 𝑟 ∈ ℝ))
326311, 325mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ ℝ)
327 nfv 1918 . . . . . . . . . . . . . . . . 17 𝑡(𝑄𝑖) < 𝑟
3282523adant3 1130 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → (𝑄𝑖) < (𝑋 + 𝑡))
329 simp3 1136 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑟 = (𝑋 + 𝑡))
330328, 329breqtrrd 5098 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → (𝑄𝑖) < 𝑟)
3313303exp 1117 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → (𝑄𝑖) < 𝑟)))
332331adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → (𝑄𝑖) < 𝑟)))
333316, 327, 332rexlimd 3245 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (∃𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡) → (𝑄𝑖) < 𝑟))
334311, 333mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑄𝑖) < 𝑟)
335 nfv 1918 . . . . . . . . . . . . . . . . 17 𝑡 𝑟 < (𝑄‘(𝑖 + 1))
3362613adant3 1130 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → (𝑋 + 𝑡) < (𝑄‘(𝑖 + 1)))
337329, 336eqbrtrd 5092 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑟 < (𝑄‘(𝑖 + 1)))
3383373exp 1117 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → 𝑟 < (𝑄‘(𝑖 + 1)))))
339338adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → 𝑟 < (𝑄‘(𝑖 + 1)))))
340316, 335, 339rexlimd 3245 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (∃𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡) → 𝑟 < (𝑄‘(𝑖 + 1))))
341311, 340mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 < (𝑄‘(𝑖 + 1)))
342305, 306, 326, 334, 341eliood 42926 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
343217ineq2d 4143 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ dom 𝐹) = (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ (-π[,]π)))
344343adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ dom 𝐹) = (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ (-π[,]π)))
345 dmres 5902 . . . . . . . . . . . . . . . . 17 dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ dom 𝐹)
346345a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ dom 𝐹))
347 dfss 3901 . . . . . . . . . . . . . . . . 17 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π) ↔ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ (-π[,]π)))
34860, 347sylib 217 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ (-π[,]π)))
349344, 346, 3483eqtr4d 2788 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
350349adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
351342, 350eleqtrrd 2842 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
352326, 341ltned 11041 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ≠ (𝑄‘(𝑖 + 1)))
353352neneqd 2947 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ¬ 𝑟 = (𝑄‘(𝑖 + 1)))
354 velsn 4574 . . . . . . . . . . . . . 14 (𝑟 ∈ {(𝑄‘(𝑖 + 1))} ↔ 𝑟 = (𝑄‘(𝑖 + 1)))
355353, 354sylnibr 328 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ¬ 𝑟 ∈ {(𝑄‘(𝑖 + 1))})
356351, 355eldifd 3894 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))}))
357356ralrimiva 3107 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))𝑟 ∈ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))}))
358 dfss3 3905 . . . . . . . . . . 11 (ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ⊆ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))}) ↔ ∀𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))𝑟 ∈ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))}))
359357, 358sylibr 233 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ⊆ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))}))
360 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠))
361196adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ ℂ) → 𝑋 ∈ ℂ)
362 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ ℂ) → 𝑠 ∈ ℂ)
363361, 362addcomd 11107 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑠 ∈ ℂ) → (𝑋 + 𝑠) = (𝑠 + 𝑋))
364363mpteq2dva 5170 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)))
365 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋))
366365addccncf 23986 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ))
367196, 366syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ))
368364, 367eqeltrd 2839 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) ∈ (ℂ–cn→ℂ))
369368adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) ∈ (ℂ–cn→ℂ))
370224rexrd 10956 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻𝑖) ∈ ℝ*)
371 iocssre 13088 . . . . . . . . . . . . . . . . . . 19 (((𝐻𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ) → ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℝ)
372370, 225, 371syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℝ)
373 ax-resscn 10859 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℂ
374372, 373sstrdi 3929 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℂ)
375289a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ℂ ⊆ ℂ)
376196ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) → 𝑋 ∈ ℂ)
377374sselda 3917 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) → 𝑠 ∈ ℂ)
378376, 377addcld 10925 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℂ)
379360, 369, 374, 375, 378cncfmptssg 43302 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))–cn→ℂ))
380 eqid 2738 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
381 eqid 2738 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) = ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))))
382380cnfldtop 23853 . . . . . . . . . . . . . . . . . . . 20 (TopOpen‘ℂfld) ∈ Top
383 unicntop 23855 . . . . . . . . . . . . . . . . . . . . 21 ℂ = (TopOpen‘ℂfld)
384383restid 17061 . . . . . . . . . . . . . . . . . . . 20 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
385382, 384ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
386385eqcomi 2747 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
387380, 381, 386cncfcn 23979 . . . . . . . . . . . . . . . . 17 ((((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)))
388374, 375, 387syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)))
389379, 388eleqtrd 2841 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)))
390380cnfldtopon 23852 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
391390a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
392 resttopon 22220 . . . . . . . . . . . . . . . . 17 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))))
393391, 374, 392syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))))
394 cncnp 22339 . . . . . . . . . . . . . . . 16 ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡))))
395393, 391, 394syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡))))
396389, 395mpbid 231 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡)))
397396simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑡 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡))
398 ubioc1 13061 . . . . . . . . . . . . . 14 (((𝐻𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐻𝑖) < (𝐻‘(𝑖 + 1))) → (𝐻‘(𝑖 + 1)) ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))))
399370, 245, 174, 398syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))))
400 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑡 = (𝐻‘(𝑖 + 1)) → ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡) = ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))))
401400eleq2d 2824 . . . . . . . . . . . . . 14 (𝑡 = (𝐻‘(𝑖 + 1)) → ((𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡) ↔ (𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1)))))
402401rspccva 3551 . . . . . . . . . . . . 13 ((∀𝑡 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡) ∧ (𝐻‘(𝑖 + 1)) ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) → (𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))))
403397, 399, 402syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))))
404 ioounsn 13138 . . . . . . . . . . . . . 14 (((𝐻𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐻𝑖) < (𝐻‘(𝑖 + 1))) → (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) = ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))))
405370, 245, 174, 404syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) = ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))))
406259eqcomd 2744 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = (𝑋 + (𝐻‘(𝑖 + 1))))
407406ad2antrr 722 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ 𝑠 = (𝐻‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) = (𝑋 + (𝐻‘(𝑖 + 1))))
408 iftrue 4462 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐻‘(𝑖 + 1)) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑄‘(𝑖 + 1)))
409408adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ 𝑠 = (𝐻‘(𝑖 + 1))) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑄‘(𝑖 + 1)))
410 oveq2 7263 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐻‘(𝑖 + 1)) → (𝑋 + 𝑠) = (𝑋 + (𝐻‘(𝑖 + 1))))
411410adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ 𝑠 = (𝐻‘(𝑖 + 1))) → (𝑋 + 𝑠) = (𝑋 + (𝐻‘(𝑖 + 1))))
412407, 409, 4113eqtr4d 2788 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ 𝑠 = (𝐻‘(𝑖 + 1))) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠))
413 iffalse 4465 . . . . . . . . . . . . . . . 16 𝑠 = (𝐻‘(𝑖 + 1)) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))
414413adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))
415 eqidd 2739 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) = (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)))
416 oveq2 7263 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (𝑋 + 𝑡) = (𝑋 + 𝑠))
417416adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) ∧ 𝑡 = 𝑠) → (𝑋 + 𝑡) = (𝑋 + 𝑠))
418 velsn 4574 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ {(𝐻‘(𝑖 + 1))} ↔ 𝑠 = (𝐻‘(𝑖 + 1)))
419418notbii 319 . . . . . . . . . . . . . . . . . . 19 𝑠 ∈ {(𝐻‘(𝑖 + 1))} ↔ ¬ 𝑠 = (𝐻‘(𝑖 + 1)))
420 elun 4079 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↔ (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘(𝑖 + 1))}))
421420biimpi 215 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) → (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘(𝑖 + 1))}))
422421orcomd 867 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) → (𝑠 ∈ {(𝐻‘(𝑖 + 1))} ∨ 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))))
423422ord 860 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) → (¬ 𝑠 ∈ {(𝐻‘(𝑖 + 1))} → 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))))
424419, 423syl5bir 242 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) → (¬ 𝑠 = (𝐻‘(𝑖 + 1)) → 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))))
425424imp 406 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))))
426425adantll 710 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))))
42795ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) → 𝑋 ∈ ℝ)
428 elioore 13038 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) → 𝑠 ∈ ℝ)
429428adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
430 elsni 4575 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ {(𝐻‘(𝑖 + 1))} → 𝑠 = (𝐻‘(𝑖 + 1)))
431430adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘(𝑖 + 1))}) → 𝑠 = (𝐻‘(𝑖 + 1)))
432225adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘(𝑖 + 1))}) → (𝐻‘(𝑖 + 1)) ∈ ℝ)
433431, 432eqeltrd 2839 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘(𝑖 + 1))}) → 𝑠 ∈ ℝ)
434429, 433jaodan 954 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘(𝑖 + 1))})) → 𝑠 ∈ ℝ)
435420, 434sylan2b 593 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) → 𝑠 ∈ ℝ)
436427, 435readdcld 10935 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) → (𝑋 + 𝑠) ∈ ℝ)
437436adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → (𝑋 + 𝑠) ∈ ℝ)
438415, 417, 426, 437fvmptd 6864 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠) = (𝑋 + 𝑠))
439414, 438eqtrd 2778 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠))
440412, 439pm2.61dan 809 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠))
441405, 440mpteq12dva 5159 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)))
442405oveq2d 7271 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) = ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))))
443442oveq1d 7270 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld)))
444443fveq1d 6758 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))) = ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))))
445403, 441, 4443eltr4d 2854 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))))
446 eqid 2738 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) = ((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}))
447 eqid 2738 . . . . . . . . . . . 12 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)))
448264, 301fssd 6602 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)):((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))⟶ℂ)
449225recnd 10934 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) ∈ ℂ)
450446, 380, 447, 448, 299, 449ellimc 24942 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) ∈ ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) lim (𝐻‘(𝑖 + 1))) ↔ (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1)))))
451445, 450mpbird 256 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) lim (𝐻‘(𝑖 + 1))))
452359, 451, 66limccog 43051 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) lim (𝐻‘(𝑖 + 1))))
453266, 286eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) = (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))))
454453oveq1d 7270 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) lim (𝐻‘(𝑖 + 1))) = ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) lim (𝐻‘(𝑖 + 1))))
455452, 454eleqtrd 2841 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) lim (𝐻‘(𝑖 + 1))))
45640adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑄𝑖) ∈ ℝ)
457456, 334gtned 11040 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ≠ (𝑄𝑖))
458457neneqd 2947 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ¬ 𝑟 = (𝑄𝑖))
459 velsn 4574 . . . . . . . . . . . . . 14 (𝑟 ∈ {(𝑄𝑖)} ↔ 𝑟 = (𝑄𝑖))
460458, 459sylnibr 328 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ¬ 𝑟 ∈ {(𝑄𝑖)})
461351, 460eldifd 3894 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄𝑖)}))
462461ralrimiva 3107 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))𝑟 ∈ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄𝑖)}))
463 dfss3 3905 . . . . . . . . . . 11 (ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ⊆ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄𝑖)}) ↔ ∀𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))𝑟 ∈ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄𝑖)}))
464462, 463sylibr 233 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ⊆ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄𝑖)}))
465 icossre 13089 . . . . . . . . . . . . . . . . . . 19 (((𝐻𝑖) ∈ ℝ ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ*) → ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℝ)
466224, 245, 465syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℝ)
467466, 373sstrdi 3929 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℂ)
468196ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) → 𝑋 ∈ ℂ)
469467sselda 3917 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) → 𝑠 ∈ ℂ)
470468, 469addcld 10925 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℂ)
471360, 369, 467, 375, 470cncfmptssg 43302 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))–cn→ℂ))
472 eqid 2738 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) = ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))))
473380, 472, 386cncfcn 23979 . . . . . . . . . . . . . . . . 17 ((((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)))
474467, 375, 473syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)))
475471, 474eleqtrd 2841 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)))
476 resttopon 22220 . . . . . . . . . . . . . . . . 17 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))))
477391, 467, 476syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))))
478 cncnp 22339 . . . . . . . . . . . . . . . 16 ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡))))
479477, 391, 478syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡))))
480475, 479mpbid 231 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡)))
481480simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑡 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡))
482 lbico1 13062 . . . . . . . . . . . . . 14 (((𝐻𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐻𝑖) < (𝐻‘(𝑖 + 1))) → (𝐻𝑖) ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))))
483370, 245, 174, 482syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻𝑖) ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))))
484 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑡 = (𝐻𝑖) → ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡) = ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻𝑖)))
485484eleq2d 2824 . . . . . . . . . . . . . 14 (𝑡 = (𝐻𝑖) → ((𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡) ↔ (𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻𝑖))))
486485rspccva 3551 . . . . . . . . . . . . 13 ((∀𝑡 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡) ∧ (𝐻𝑖) ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) → (𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻𝑖)))
487481, 483, 486syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻𝑖)))
488 uncom 4083 . . . . . . . . . . . . . 14 (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) = ({(𝐻𝑖)} ∪ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))))
489 snunioo 13139 . . . . . . . . . . . . . . 15 (((𝐻𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐻𝑖) < (𝐻‘(𝑖 + 1))) → ({(𝐻𝑖)} ∪ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) = ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))))
490370, 245, 174, 489syl3anc 1369 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ({(𝐻𝑖)} ∪ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) = ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))))
491488, 490syl5eq 2791 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) = ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))))
492 iftrue 4462 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐻𝑖) → if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑄𝑖))
493492adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = (𝐻𝑖)) → if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑄𝑖))
494240adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = (𝐻𝑖)) → (𝑄𝑖) = (𝑋 + (𝐻𝑖)))
495 oveq2 7263 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝐻𝑖) → (𝑋 + 𝑠) = (𝑋 + (𝐻𝑖)))
496495eqcomd 2744 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐻𝑖) → (𝑋 + (𝐻𝑖)) = (𝑋 + 𝑠))
497496adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = (𝐻𝑖)) → (𝑋 + (𝐻𝑖)) = (𝑋 + 𝑠))
498493, 494, 4973eqtrd 2782 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = (𝐻𝑖)) → if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠))
499498adantlr 711 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) ∧ 𝑠 = (𝐻𝑖)) → if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠))
500 iffalse 4465 . . . . . . . . . . . . . . . 16 𝑠 = (𝐻𝑖) → if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))
501500adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) ∧ ¬ 𝑠 = (𝐻𝑖)) → if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))
502 eqidd 2739 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) ∧ ¬ 𝑠 = (𝐻𝑖)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) = (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)))
503416adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) ∧ ¬ 𝑠 = (𝐻𝑖)) ∧ 𝑡 = 𝑠) → (𝑋 + 𝑡) = (𝑋 + 𝑠))
504 velsn 4574 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ {(𝐻𝑖)} ↔ 𝑠 = (𝐻𝑖))
505504notbii 319 . . . . . . . . . . . . . . . . . . 19 𝑠 ∈ {(𝐻𝑖)} ↔ ¬ 𝑠 = (𝐻𝑖))
506 elun 4079 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) ↔ (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻𝑖)}))
507506biimpi 215 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) → (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻𝑖)}))
508507orcomd 867 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) → (𝑠 ∈ {(𝐻𝑖)} ∨ 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))))
509508ord 860 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) → (¬ 𝑠 ∈ {(𝐻𝑖)} → 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))))
510505, 509syl5bir 242 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) → (¬ 𝑠 = (𝐻𝑖) → 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))))
511510imp 406 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) ∧ ¬ 𝑠 = (𝐻𝑖)) → 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))))
512511adantll 710 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) ∧ ¬ 𝑠 = (𝐻𝑖)) → 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))))
51395ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) → 𝑋 ∈ ℝ)
514 elsni 4575 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ {(𝐻𝑖)} → 𝑠 = (𝐻𝑖))
515514adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻𝑖)}) → 𝑠 = (𝐻𝑖))
516224adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻𝑖)}) → (𝐻𝑖) ∈ ℝ)
517515, 516eqeltrd 2839 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻𝑖)}) → 𝑠 ∈ ℝ)
518429, 517jaodan 954 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻𝑖)})) → 𝑠 ∈ ℝ)
519506, 518sylan2b 593 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) → 𝑠 ∈ ℝ)
520513, 519readdcld 10935 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) → (𝑋 + 𝑠) ∈ ℝ)
521520adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) ∧ ¬ 𝑠 = (𝐻𝑖)) → (𝑋 + 𝑠) ∈ ℝ)
522502, 503, 512, 521fvmptd 6864 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) ∧ ¬ 𝑠 = (𝐻𝑖)) → ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠) = (𝑋 + 𝑠))
523501, 522eqtrd 2778 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) ∧ ¬ 𝑠 = (𝐻𝑖)) → if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠))
524499, 523pm2.61dan 809 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) → if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠))
525491, 524mpteq12dva 5159 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) ↦ if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)))
526491oveq2d 7271 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) = ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))))
527526oveq1d 7270 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld)))
528527fveq1d 6758 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) CnP (TopOpen‘ℂfld))‘(𝐻𝑖)) = ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻𝑖)))
529487, 525, 5283eltr4d 2854 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) ↦ if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) CnP (TopOpen‘ℂfld))‘(𝐻𝑖)))
530 eqid 2738 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) = ((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}))
531 eqid 2738 . . . . . . . . . . . 12 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) ↦ if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) ↦ if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)))
532224recnd 10934 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻𝑖) ∈ ℂ)
533530, 380, 531, 448, 299, 532ellimc 24942 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) ∈ ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) lim (𝐻𝑖)) ↔ (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) ↦ if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) CnP (TopOpen‘ℂfld))‘(𝐻𝑖))))
534529, 533mpbird 256 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) lim (𝐻𝑖)))
535464, 534, 69limccog 43051 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) lim (𝐻𝑖)))
536453oveq1d 7270 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) lim (𝐻𝑖)) = ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) lim (𝐻𝑖)))
537535, 536eleqtrd 2841 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) lim (𝐻𝑖)))
538224, 225, 304, 455, 537iblcncfioo 43409 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) ∈ 𝐿1)
53930ad2antrr 722 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝐹:(-π[,]π)⟶ℂ)
54049a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → -π ∈ ℝ*)
54151a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → π ∈ ℝ*)
54221ad2antrr 722 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(-π[,]π))
543 simplr 765 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀))
544 simpr 484 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1))))
545163, 173oveq12d 7273 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻𝑖)[,](𝐻‘(𝑖 + 1))) = (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋)))
546545adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → ((𝐻𝑖)[,](𝐻‘(𝑖 + 1))) = (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋)))
547544, 546eleqtrd 2841 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋)))
548547, 116syldan 590 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
549540, 541, 542, 543, 548fourierdlem1 43539 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) ∈ (-π[,]π))
550539, 549ffvelrnd 6944 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑡)) ∈ ℂ)
551224, 225, 538, 550ibliooicc 43402 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) ∈ 𝐿1)
55214, 20, 159, 174, 223, 551itgspltprt 43410 . . . . 5 (𝜑 → ∫((𝐻‘0)[,](𝐻𝑀))(𝐹‘(𝑋 + 𝑡)) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))(𝐹‘(𝑋 + 𝑡)) d𝑡)
553545itgeq1d 43388 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ∫((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))(𝐹‘(𝑋 + 𝑡)) d𝑡 = ∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
554553sumeq2dv 15343 . . . . 5 (𝜑 → Σ𝑖 ∈ (0..^𝑀)∫((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))(𝐹‘(𝑋 + 𝑡)) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
555552, 554eqtrd 2778 . . . 4 (𝜑 → ∫((𝐻‘0)[,](𝐻𝑀))(𝐹‘(𝑋 + 𝑡)) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
556125, 155, 5553eqtrd 2782 . . 3 (𝜑 → ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠 = Σ𝑖 ∈ (0..^𝑀)∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
557121, 556eqtr4d 2781 . 2 (𝜑 → Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹𝑡) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠)
55813, 76, 5573eqtrd 2782 1 (𝜑 → ∫(-π[,]π)(𝐹𝑡) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  ifcif 4456  {csn 4558   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  cres 5582  ccom 5584  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136  cn 11903  cuz 12511  (,)cioo 13008  (,]cioc 13009  [,)cico 13010  [,]cicc 13011  ...cfz 13168  ..^cfzo 13311  Σcsu 15325  πcpi 15704  t crest 17048  TopOpenctopn 17049  fldccnfld 20510  Topctop 21950  TopOnctopon 21967   Cn ccn 22283   CnP ccnp 22284  cnccncf 23945  citg 24687   lim climc 24931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739  df-ditg 24916  df-limc 24935  df-dv 24936
This theorem is referenced by:  fourierdlem101  43638
  Copyright terms: Public domain W3C validator