| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem93.4 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
| 2 | | fourierdlem93.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 3 | | fourierdlem93.1 |
. . . . . . . . . 10
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 4 | 3 | fourierdlem2 46124 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 5 | 2, 4 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 6 | 1, 5 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
| 7 | 6 | simprd 495 |
. . . . . 6
⊢ (𝜑 → (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
| 8 | 7 | simplld 768 |
. . . . 5
⊢ (𝜑 → (𝑄‘0) = -π) |
| 9 | 8 | eqcomd 2743 |
. . . 4
⊢ (𝜑 → -π = (𝑄‘0)) |
| 10 | 7 | simplrd 770 |
. . . . 5
⊢ (𝜑 → (𝑄‘𝑀) = π) |
| 11 | 10 | eqcomd 2743 |
. . . 4
⊢ (𝜑 → π = (𝑄‘𝑀)) |
| 12 | 9, 11 | oveq12d 7449 |
. . 3
⊢ (𝜑 → (-π[,]π) = ((𝑄‘0)[,](𝑄‘𝑀))) |
| 13 | 12 | itgeq1d 45972 |
. 2
⊢ (𝜑 → ∫(-π[,]π)(𝐹‘𝑡) d𝑡 = ∫((𝑄‘0)[,](𝑄‘𝑀))(𝐹‘𝑡) d𝑡) |
| 14 | | 0zd 12625 |
. . 3
⊢ (𝜑 → 0 ∈
ℤ) |
| 15 | | nnuz 12921 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
| 16 | 2, 15 | eleqtrdi 2851 |
. . . 4
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
| 17 | | 1e0p1 12775 |
. . . . . 6
⊢ 1 = (0 +
1) |
| 18 | 17 | a1i 11 |
. . . . 5
⊢ (𝜑 → 1 = (0 +
1)) |
| 19 | 18 | fveq2d 6910 |
. . . 4
⊢ (𝜑 →
(ℤ≥‘1) = (ℤ≥‘(0 +
1))) |
| 20 | 16, 19 | eleqtrd 2843 |
. . 3
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(0 +
1))) |
| 21 | 3, 2, 1 | fourierdlem15 46137 |
. . . 4
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(-π[,]π)) |
| 22 | | pire 26500 |
. . . . . . 7
⊢ π
∈ ℝ |
| 23 | 22 | renegcli 11570 |
. . . . . 6
⊢ -π
∈ ℝ |
| 24 | | iccssre 13469 |
. . . . . 6
⊢ ((-π
∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆
ℝ) |
| 25 | 23, 22, 24 | mp2an 692 |
. . . . 5
⊢
(-π[,]π) ⊆ ℝ |
| 26 | 25 | a1i 11 |
. . . 4
⊢ (𝜑 → (-π[,]π) ⊆
ℝ) |
| 27 | 21, 26 | fssd 6753 |
. . 3
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
| 28 | 7 | simprd 495 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 29 | 28 | r19.21bi 3251 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 30 | | fourierdlem93.6 |
. . . . 5
⊢ (𝜑 → 𝐹:(-π[,]π)⟶ℂ) |
| 31 | 30 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → 𝐹:(-π[,]π)⟶ℂ) |
| 32 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → 𝑡 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) |
| 33 | 12 | eqcomd 2743 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘0)[,](𝑄‘𝑀)) = (-π[,]π)) |
| 34 | 33 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → ((𝑄‘0)[,](𝑄‘𝑀)) = (-π[,]π)) |
| 35 | 32, 34 | eleqtrd 2843 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → 𝑡 ∈ (-π[,]π)) |
| 36 | 31, 35 | ffvelcdmd 7105 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → (𝐹‘𝑡) ∈ ℂ) |
| 37 | 27 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 38 | | elfzofz 13715 |
. . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
| 39 | 38 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
| 40 | 37, 39 | ffvelcdmd 7105 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
| 41 | | fzofzp1 13803 |
. . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
| 42 | 41 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
| 43 | 37, 42 | ffvelcdmd 7105 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 44 | 30 | feqmptd 6977 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 = (𝑡 ∈ (-π[,]π) ↦ (𝐹‘𝑡))) |
| 45 | 44 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹 = (𝑡 ∈ (-π[,]π) ↦ (𝐹‘𝑡))) |
| 46 | 45 | reseq1d 5996 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑡 ∈ (-π[,]π) ↦ (𝐹‘𝑡)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 47 | | ioossicc 13473 |
. . . . . . . . . . 11
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) |
| 48 | 47 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 49 | 23 | rexri 11319 |
. . . . . . . . . . . . . 14
⊢ -π
∈ ℝ* |
| 50 | 49 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → -π ∈
ℝ*) |
| 51 | 22 | rexri 11319 |
. . . . . . . . . . . . . 14
⊢ π
∈ ℝ* |
| 52 | 51 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → π ∈
ℝ*) |
| 53 | 21 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
| 54 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀)) |
| 55 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 56 | 50, 52, 53, 54, 55 | fourierdlem1 46123 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑡 ∈ (-π[,]π)) |
| 57 | 56 | ralrimiva 3146 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))𝑡 ∈ (-π[,]π)) |
| 58 | | dfss3 3972 |
. . . . . . . . . . 11
⊢ (((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π) ↔
∀𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))𝑡 ∈ (-π[,]π)) |
| 59 | 57, 58 | sylibr 234 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
| 60 | 48, 59 | sstrd 3994 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
| 61 | 60 | resmptd 6058 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (-π[,]π) ↦ (𝐹‘𝑡)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡))) |
| 62 | 46, 61 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡))) |
| 63 | 62 | eqcomd 2743 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) = (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 64 | | fourierdlem93.7 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 65 | 63, 64 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 66 | | fourierdlem93.9 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
| 67 | 62 | oveq1d 7446 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) limℂ (𝑄‘(𝑖 + 1)))) |
| 68 | 66, 67 | eleqtrd 2843 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) limℂ (𝑄‘(𝑖 + 1)))) |
| 69 | | fourierdlem93.8 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
| 70 | 62 | oveq1d 7446 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) limℂ (𝑄‘𝑖))) |
| 71 | 69, 70 | eleqtrd 2843 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) limℂ (𝑄‘𝑖))) |
| 72 | 40, 43, 65, 68, 71 | iblcncfioo 45993 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) ∈
𝐿1) |
| 73 | 30 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐹:(-π[,]π)⟶ℂ) |
| 74 | 73, 56 | ffvelcdmd 7105 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹‘𝑡) ∈ ℂ) |
| 75 | 40, 43, 72, 74 | ibliooicc 45986 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) ∈
𝐿1) |
| 76 | 14, 20, 27, 29, 36, 75 | itgspltprt 45994 |
. 2
⊢ (𝜑 → ∫((𝑄‘0)[,](𝑄‘𝑀))(𝐹‘𝑡) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑡) d𝑡) |
| 77 | | fvres 6925 |
. . . . . . . 8
⊢ (𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡) = (𝐹‘𝑡)) |
| 78 | 77 | eqcomd 2743 |
. . . . . . 7
⊢ (𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) → (𝐹‘𝑡) = ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡)) |
| 79 | 78 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹‘𝑡) = ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡)) |
| 80 | 79 | itgeq2dv 25817 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑡) d𝑡 = ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡) d𝑡) |
| 81 | | eqid 2737 |
. . . . . 6
⊢ (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) = (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
| 82 | 30 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:(-π[,]π)⟶ℂ) |
| 83 | 82, 59 | fssresd 6775 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ) |
| 84 | 48 | resabs1d 6026 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 85 | 84, 64 | eqeltrd 2841 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 86 | 84 | oveq1d 7446 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
| 87 | 40, 43, 29, 83 | limcicciooub 45652 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
| 88 | 86, 87 | eqtr3d 2779 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
| 89 | 66, 88 | eleqtrd 2843 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
| 90 | 84 | eqcomd 2743 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 91 | 90 | oveq1d 7446 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = (((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
| 92 | 40, 43, 29, 83 | limciccioolb 45636 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
| 93 | 91, 92 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
| 94 | 69, 93 | eleqtrd 2843 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
| 95 | | fourierdlem93.5 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 96 | 95 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ) |
| 97 | 81, 40, 43, 29, 83, 85, 89, 94, 96 | fourierdlem82 46203 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡) d𝑡 = ∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) d𝑡) |
| 98 | 40 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑄‘𝑖) ∈ ℝ) |
| 99 | 43 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 100 | 95 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑋 ∈ ℝ) |
| 101 | 98, 100 | resubcld 11691 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝑄‘𝑖) − 𝑋) ∈ ℝ) |
| 102 | 99, 100 | resubcld 11691 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ) |
| 103 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) |
| 104 | | eliccre 45518 |
. . . . . . . . . 10
⊢ ((((𝑄‘𝑖) − 𝑋) ∈ ℝ ∧ ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑡 ∈ ℝ) |
| 105 | 101, 102,
103, 104 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑡 ∈ ℝ) |
| 106 | 100, 105 | readdcld 11290 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑋 + 𝑡) ∈ ℝ) |
| 107 | | elicc2 13452 |
. . . . . . . . . . . 12
⊢ ((((𝑄‘𝑖) − 𝑋) ∈ ℝ ∧ ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ) → (𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋)) ↔ (𝑡 ∈ ℝ ∧ ((𝑄‘𝑖) − 𝑋) ≤ 𝑡 ∧ 𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋)))) |
| 108 | 101, 102,
107 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋)) ↔ (𝑡 ∈ ℝ ∧ ((𝑄‘𝑖) − 𝑋) ≤ 𝑡 ∧ 𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋)))) |
| 109 | 103, 108 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑡 ∈ ℝ ∧ ((𝑄‘𝑖) − 𝑋) ≤ 𝑡 ∧ 𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋))) |
| 110 | 109 | simp2d 1144 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝑄‘𝑖) − 𝑋) ≤ 𝑡) |
| 111 | 98, 100, 105 | lesubadd2d 11862 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (((𝑄‘𝑖) − 𝑋) ≤ 𝑡 ↔ (𝑄‘𝑖) ≤ (𝑋 + 𝑡))) |
| 112 | 110, 111 | mpbid 232 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑄‘𝑖) ≤ (𝑋 + 𝑡)) |
| 113 | 109 | simp3d 1145 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋)) |
| 114 | 100, 105,
99 | leaddsub2d 11865 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝑋 + 𝑡) ≤ (𝑄‘(𝑖 + 1)) ↔ 𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋))) |
| 115 | 113, 114 | mpbird 257 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑋 + 𝑡) ≤ (𝑄‘(𝑖 + 1))) |
| 116 | 98, 99, 106, 112, 115 | eliccd 45517 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑋 + 𝑡) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 117 | | fvres 6925 |
. . . . . . 7
⊢ ((𝑋 + 𝑡) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡))) |
| 118 | 116, 117 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡))) |
| 119 | 118 | itgeq2dv 25817 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) d𝑡 = ∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
| 120 | 80, 97, 119 | 3eqtrd 2781 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑡) d𝑡 = ∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
| 121 | 120 | sumeq2dv 15738 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ (0..^𝑀)∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑡) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
| 122 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → (𝑋 + 𝑠) = (𝑋 + 𝑡)) |
| 123 | 122 | fveq2d 6910 |
. . . . . 6
⊢ (𝑠 = 𝑡 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑡))) |
| 124 | 123 | cbvitgv 25812 |
. . . . 5
⊢
∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡 |
| 125 | 124 | a1i 11 |
. . . 4
⊢ (𝜑 → ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
| 126 | | fourierdlem93.2 |
. . . . . . . . 9
⊢ 𝐻 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋)) |
| 127 | 126 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋))) |
| 128 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → (𝑄‘𝑖) = (𝑄‘0)) |
| 129 | 128 | oveq1d 7446 |
. . . . . . . . 9
⊢ (𝑖 = 0 → ((𝑄‘𝑖) − 𝑋) = ((𝑄‘0) − 𝑋)) |
| 130 | 129 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑄‘𝑖) − 𝑋) = ((𝑄‘0) − 𝑋)) |
| 131 | 2 | nnzd 12640 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 132 | | 0le0 12367 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
| 133 | 132 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ 0) |
| 134 | | 0red 11264 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℝ) |
| 135 | 2 | nnred 12281 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 136 | 2 | nngt0d 12315 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < 𝑀) |
| 137 | 134, 135,
136 | ltled 11409 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ 𝑀) |
| 138 | 14, 131, 14, 133, 137 | elfzd 13555 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
| 139 | 8, 23 | eqeltrdi 2849 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
| 140 | 139, 95 | resubcld 11691 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄‘0) − 𝑋) ∈ ℝ) |
| 141 | 127, 130,
138, 140 | fvmptd 7023 |
. . . . . . 7
⊢ (𝜑 → (𝐻‘0) = ((𝑄‘0) − 𝑋)) |
| 142 | 8 | oveq1d 7446 |
. . . . . . 7
⊢ (𝜑 → ((𝑄‘0) − 𝑋) = (-π − 𝑋)) |
| 143 | 141, 142 | eqtr2d 2778 |
. . . . . 6
⊢ (𝜑 → (-π − 𝑋) = (𝐻‘0)) |
| 144 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑀 → (𝑄‘𝑖) = (𝑄‘𝑀)) |
| 145 | 144 | oveq1d 7446 |
. . . . . . . . 9
⊢ (𝑖 = 𝑀 → ((𝑄‘𝑖) − 𝑋) = ((𝑄‘𝑀) − 𝑋)) |
| 146 | 145 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 𝑀) → ((𝑄‘𝑖) − 𝑋) = ((𝑄‘𝑀) − 𝑋)) |
| 147 | 135 | leidd 11829 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ≤ 𝑀) |
| 148 | 14, 131, 131, 137, 147 | elfzd 13555 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
| 149 | 10, 22 | eqeltrdi 2849 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘𝑀) ∈ ℝ) |
| 150 | 149, 95 | resubcld 11691 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄‘𝑀) − 𝑋) ∈ ℝ) |
| 151 | 127, 146,
148, 150 | fvmptd 7023 |
. . . . . . 7
⊢ (𝜑 → (𝐻‘𝑀) = ((𝑄‘𝑀) − 𝑋)) |
| 152 | 10 | oveq1d 7446 |
. . . . . . 7
⊢ (𝜑 → ((𝑄‘𝑀) − 𝑋) = (π − 𝑋)) |
| 153 | 151, 152 | eqtr2d 2778 |
. . . . . 6
⊢ (𝜑 → (π − 𝑋) = (𝐻‘𝑀)) |
| 154 | 143, 153 | oveq12d 7449 |
. . . . 5
⊢ (𝜑 → ((-π − 𝑋)[,](π − 𝑋)) = ((𝐻‘0)[,](𝐻‘𝑀))) |
| 155 | 154 | itgeq1d 45972 |
. . . 4
⊢ (𝜑 → ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡 = ∫((𝐻‘0)[,](𝐻‘𝑀))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
| 156 | 27 | ffvelcdmda 7104 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
| 157 | 95 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ) |
| 158 | 156, 157 | resubcld 11691 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑄‘𝑖) − 𝑋) ∈ ℝ) |
| 159 | 158, 126 | fmptd 7134 |
. . . . . 6
⊢ (𝜑 → 𝐻:(0...𝑀)⟶ℝ) |
| 160 | 40, 43, 96, 29 | ltsub1dd 11875 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − 𝑋) < ((𝑄‘(𝑖 + 1)) − 𝑋)) |
| 161 | 39, 158 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − 𝑋) ∈ ℝ) |
| 162 | 126 | fvmpt2 7027 |
. . . . . . . 8
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑄‘𝑖) − 𝑋) ∈ ℝ) → (𝐻‘𝑖) = ((𝑄‘𝑖) − 𝑋)) |
| 163 | 39, 161, 162 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘𝑖) = ((𝑄‘𝑖) − 𝑋)) |
| 164 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝑄‘𝑖) = (𝑄‘𝑗)) |
| 165 | 164 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖) − 𝑋) = ((𝑄‘𝑗) − 𝑋)) |
| 166 | 165 | cbvmptv 5255 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) − 𝑋)) |
| 167 | 126, 166 | eqtri 2765 |
. . . . . . . . 9
⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) − 𝑋)) |
| 168 | 167 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐻 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) − 𝑋))) |
| 169 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑖 + 1) → (𝑄‘𝑗) = (𝑄‘(𝑖 + 1))) |
| 170 | 169 | oveq1d 7446 |
. . . . . . . . 9
⊢ (𝑗 = (𝑖 + 1) → ((𝑄‘𝑗) − 𝑋) = ((𝑄‘(𝑖 + 1)) − 𝑋)) |
| 171 | 170 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑄‘𝑗) − 𝑋) = ((𝑄‘(𝑖 + 1)) − 𝑋)) |
| 172 | 43, 96 | resubcld 11691 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ) |
| 173 | 168, 171,
42, 172 | fvmptd 7023 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) = ((𝑄‘(𝑖 + 1)) − 𝑋)) |
| 174 | 160, 163,
173 | 3brtr4d 5175 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘𝑖) < (𝐻‘(𝑖 + 1))) |
| 175 | | frn 6743 |
. . . . . . . . 9
⊢ (𝐹:(-π[,]π)⟶ℂ
→ ran 𝐹 ⊆
ℂ) |
| 176 | 30, 175 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 ⊆ ℂ) |
| 177 | 176 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → ran 𝐹 ⊆ ℂ) |
| 178 | | ffun 6739 |
. . . . . . . . . 10
⊢ (𝐹:(-π[,]π)⟶ℂ
→ Fun 𝐹) |
| 179 | 30, 178 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝐹) |
| 180 | 179 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → Fun 𝐹) |
| 181 | 23 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → -π ∈
ℝ) |
| 182 | 22 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → π ∈
ℝ) |
| 183 | 95 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → 𝑋 ∈ ℝ) |
| 184 | 141, 140 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐻‘0) ∈ ℝ) |
| 185 | 184 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝐻‘0) ∈ ℝ) |
| 186 | 151, 150 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐻‘𝑀) ∈ ℝ) |
| 187 | 186 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝐻‘𝑀) ∈ ℝ) |
| 188 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) |
| 189 | | eliccre 45518 |
. . . . . . . . . . . 12
⊢ (((𝐻‘0) ∈ ℝ ∧
(𝐻‘𝑀) ∈ ℝ ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → 𝑡 ∈ ℝ) |
| 190 | 185, 187,
188, 189 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → 𝑡 ∈ ℝ) |
| 191 | 183, 190 | readdcld 11290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝑋 + 𝑡) ∈ ℝ) |
| 192 | 128 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝑄‘𝑖) = (𝑄‘0)) |
| 193 | 192 | oveq1d 7446 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑄‘𝑖) − 𝑋) = ((𝑄‘0) − 𝑋)) |
| 194 | 127, 193,
138, 140 | fvmptd 7023 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐻‘0) = ((𝑄‘0) − 𝑋)) |
| 195 | 194 | oveq2d 7447 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 + (𝐻‘0)) = (𝑋 + ((𝑄‘0) − 𝑋))) |
| 196 | 95 | recnd 11289 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 197 | 139 | recnd 11289 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘0) ∈ ℂ) |
| 198 | 196, 197 | pncan3d 11623 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 + ((𝑄‘0) − 𝑋)) = (𝑄‘0)) |
| 199 | 195, 198,
8 | 3eqtrrd 2782 |
. . . . . . . . . . . 12
⊢ (𝜑 → -π = (𝑋 + (𝐻‘0))) |
| 200 | 199 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → -π = (𝑋 + (𝐻‘0))) |
| 201 | | elicc2 13452 |
. . . . . . . . . . . . . . 15
⊢ (((𝐻‘0) ∈ ℝ ∧
(𝐻‘𝑀) ∈ ℝ) → (𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀)) ↔ (𝑡 ∈ ℝ ∧ (𝐻‘0) ≤ 𝑡 ∧ 𝑡 ≤ (𝐻‘𝑀)))) |
| 202 | 185, 187,
201 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀)) ↔ (𝑡 ∈ ℝ ∧ (𝐻‘0) ≤ 𝑡 ∧ 𝑡 ≤ (𝐻‘𝑀)))) |
| 203 | 188, 202 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝑡 ∈ ℝ ∧ (𝐻‘0) ≤ 𝑡 ∧ 𝑡 ≤ (𝐻‘𝑀))) |
| 204 | 203 | simp2d 1144 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝐻‘0) ≤ 𝑡) |
| 205 | 185, 190,
183, 204 | leadd2dd 11878 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝑋 + (𝐻‘0)) ≤ (𝑋 + 𝑡)) |
| 206 | 200, 205 | eqbrtrd 5165 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → -π ≤ (𝑋 + 𝑡)) |
| 207 | 203 | simp3d 1145 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → 𝑡 ≤ (𝐻‘𝑀)) |
| 208 | 190, 187,
183, 207 | leadd2dd 11878 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝑋 + 𝑡) ≤ (𝑋 + (𝐻‘𝑀))) |
| 209 | 151 | oveq2d 7447 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 + (𝐻‘𝑀)) = (𝑋 + ((𝑄‘𝑀) − 𝑋))) |
| 210 | 149 | recnd 11289 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘𝑀) ∈ ℂ) |
| 211 | 196, 210 | pncan3d 11623 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 + ((𝑄‘𝑀) − 𝑋)) = (𝑄‘𝑀)) |
| 212 | 209, 211,
10 | 3eqtrrd 2782 |
. . . . . . . . . . . 12
⊢ (𝜑 → π = (𝑋 + (𝐻‘𝑀))) |
| 213 | 212 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → π = (𝑋 + (𝐻‘𝑀))) |
| 214 | 208, 213 | breqtrrd 5171 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝑋 + 𝑡) ≤ π) |
| 215 | 181, 182,
191, 206, 214 | eliccd 45517 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝑋 + 𝑡) ∈ (-π[,]π)) |
| 216 | | fdm 6745 |
. . . . . . . . . . . 12
⊢ (𝐹:(-π[,]π)⟶ℂ
→ dom 𝐹 =
(-π[,]π)) |
| 217 | 30, 216 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = (-π[,]π)) |
| 218 | 217 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (𝜑 → (-π[,]π) = dom 𝐹) |
| 219 | 218 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (-π[,]π) = dom 𝐹) |
| 220 | 215, 219 | eleqtrd 2843 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝑋 + 𝑡) ∈ dom 𝐹) |
| 221 | | fvelrn 7096 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ (𝑋 + 𝑡) ∈ dom 𝐹) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹) |
| 222 | 180, 220,
221 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹) |
| 223 | 177, 222 | sseldd 3984 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝐹‘(𝑋 + 𝑡)) ∈ ℂ) |
| 224 | 163, 161 | eqeltrd 2841 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘𝑖) ∈ ℝ) |
| 225 | 173, 172 | eqeltrd 2841 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) ∈ ℝ) |
| 226 | 82, 60 | fssresd 6775 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
| 227 | 40 | rexrd 11311 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈
ℝ*) |
| 228 | 227 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
| 229 | 43 | rexrd 11311 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 230 | 229 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 231 | 95 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
| 232 | | elioore 13417 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) → 𝑡 ∈ ℝ) |
| 233 | 232 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑡 ∈ ℝ) |
| 234 | 231, 233 | readdcld 11290 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) ∈ ℝ) |
| 235 | 163 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝐻‘𝑖)) = (𝑋 + ((𝑄‘𝑖) − 𝑋))) |
| 236 | 196 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ) |
| 237 | 40 | recnd 11289 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℂ) |
| 238 | 236, 237 | pncan3d 11623 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + ((𝑄‘𝑖) − 𝑋)) = (𝑄‘𝑖)) |
| 239 | | eqidd 2738 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = (𝑄‘𝑖)) |
| 240 | 235, 238,
239 | 3eqtrrd 2782 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = (𝑋 + (𝐻‘𝑖))) |
| 241 | 240 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑄‘𝑖) = (𝑋 + (𝐻‘𝑖))) |
| 242 | 224 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻‘𝑖) ∈ ℝ) |
| 243 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) |
| 244 | 242 | rexrd 11311 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻‘𝑖) ∈
ℝ*) |
| 245 | 225 | rexrd 11311 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) ∈
ℝ*) |
| 246 | 245 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻‘(𝑖 + 1)) ∈
ℝ*) |
| 247 | | elioo2 13428 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐻‘𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ*) →
(𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↔ (𝑡 ∈ ℝ ∧ (𝐻‘𝑖) < 𝑡 ∧ 𝑡 < (𝐻‘(𝑖 + 1))))) |
| 248 | 244, 246,
247 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↔ (𝑡 ∈ ℝ ∧ (𝐻‘𝑖) < 𝑡 ∧ 𝑡 < (𝐻‘(𝑖 + 1))))) |
| 249 | 243, 248 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑡 ∈ ℝ ∧ (𝐻‘𝑖) < 𝑡 ∧ 𝑡 < (𝐻‘(𝑖 + 1)))) |
| 250 | 249 | simp2d 1144 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻‘𝑖) < 𝑡) |
| 251 | 242, 233,
231, 250 | ltadd2dd 11420 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + (𝐻‘𝑖)) < (𝑋 + 𝑡)) |
| 252 | 241, 251 | eqbrtrd 5165 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑋 + 𝑡)) |
| 253 | 225 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻‘(𝑖 + 1)) ∈ ℝ) |
| 254 | 249 | simp3d 1145 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑡 < (𝐻‘(𝑖 + 1))) |
| 255 | 233, 253,
231, 254 | ltadd2dd 11420 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) < (𝑋 + (𝐻‘(𝑖 + 1)))) |
| 256 | 173 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝐻‘(𝑖 + 1))) = (𝑋 + ((𝑄‘(𝑖 + 1)) − 𝑋))) |
| 257 | 43 | recnd 11289 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ) |
| 258 | 236, 257 | pncan3d 11623 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + ((𝑄‘(𝑖 + 1)) − 𝑋)) = (𝑄‘(𝑖 + 1))) |
| 259 | 256, 258 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝐻‘(𝑖 + 1))) = (𝑄‘(𝑖 + 1))) |
| 260 | 259 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + (𝐻‘(𝑖 + 1))) = (𝑄‘(𝑖 + 1))) |
| 261 | 255, 260 | breqtrd 5169 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) < (𝑄‘(𝑖 + 1))) |
| 262 | 228, 230,
234, 252, 261 | eliood 45511 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 263 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) = (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) |
| 264 | 262, 263 | fmptd 7134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)):((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))⟶((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 265 | | fcompt 7153 |
. . . . . . . . . . 11
⊢ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ∧ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)):((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))⟶((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) = (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)))) |
| 266 | 226, 264,
265 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) = (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)))) |
| 267 | | oveq2 7439 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑟 → (𝑋 + 𝑡) = (𝑋 + 𝑟)) |
| 268 | 267 | cbvmptv 5255 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) = (𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟)) |
| 269 | 268 | fveq1i 6907 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠) = ((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠) |
| 270 | 269 | fveq2i 6909 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠)) |
| 271 | 270 | mpteq2i 5247 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠))) |
| 272 | 271 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠)))) |
| 273 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑡 → ((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠) = ((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡)) |
| 274 | 273 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡))) |
| 275 | 274 | cbvmptv 5255 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠))) = (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡))) |
| 276 | 275 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠))) = (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡)))) |
| 277 | | eqidd 2738 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟)) = (𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))) |
| 278 | | oveq2 7439 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑡 → (𝑋 + 𝑟) = (𝑋 + 𝑡)) |
| 279 | 278 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) ∧ 𝑟 = 𝑡) → (𝑋 + 𝑟) = (𝑋 + 𝑡)) |
| 280 | 277, 279,
243, 234 | fvmptd 7023 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → ((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡) = (𝑋 + 𝑡)) |
| 281 | 280 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡))) |
| 282 | | fvres 6925 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 + 𝑡) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡))) |
| 283 | 262, 282 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡))) |
| 284 | 281, 283 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡)) = (𝐹‘(𝑋 + 𝑡))) |
| 285 | 284 | mpteq2dva 5242 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡))) = (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡)))) |
| 286 | 272, 276,
285 | 3eqtrd 2781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡)))) |
| 287 | 266, 286 | eqtr2d 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)))) |
| 288 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ℂ ↦ (𝑋 + 𝑡)) = (𝑡 ∈ ℂ ↦ (𝑋 + 𝑡)) |
| 289 | | ssid 4006 |
. . . . . . . . . . . . . . 15
⊢ ℂ
⊆ ℂ |
| 290 | 289 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → ℂ
⊆ ℂ) |
| 291 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → 𝑋 ∈
ℂ) |
| 292 | 290, 291,
290 | constcncfg 45887 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑋) ∈ (ℂ–cn→ℂ)) |
| 293 | | cncfmptid 24939 |
. . . . . . . . . . . . . . 15
⊢ ((ℂ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)) |
| 294 | 289, 289,
293 | mp2an 692 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ) |
| 295 | 294 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)) |
| 296 | 292, 295 | addcncf 25478 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ (𝑋 + 𝑡)) ∈ (ℂ–cn→ℂ)) |
| 297 | 236, 296 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ℂ ↦ (𝑋 + 𝑡)) ∈ (ℂ–cn→ℂ)) |
| 298 | | ioosscn 13449 |
. . . . . . . . . . . 12
⊢ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ⊆ ℂ |
| 299 | 298 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ⊆ ℂ) |
| 300 | | ioosscn 13449 |
. . . . . . . . . . . 12
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ |
| 301 | 300 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ) |
| 302 | 288, 297,
299, 301, 262 | cncfmptssg 45886 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))–cn→((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 303 | 302, 64 | cncfco 24933 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))–cn→ℂ)) |
| 304 | 287, 303 | eqeltrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))–cn→ℂ)) |
| 305 | 227 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑄‘𝑖) ∈
ℝ*) |
| 306 | 229 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 307 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) |
| 308 | | vex 3484 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑟 ∈ V |
| 309 | 263 | elrnmpt 5969 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ∈ V → (𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ↔ ∃𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡))) |
| 310 | 308, 309 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ↔ ∃𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡)) |
| 311 | 307, 310 | sylib 218 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ∃𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡)) |
| 312 | | nfv 1914 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡(𝜑 ∧ 𝑖 ∈ (0..^𝑀)) |
| 313 | | nfmpt1 5250 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡(𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) |
| 314 | 313 | nfrn 5963 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡ran
(𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) |
| 315 | 314 | nfcri 2897 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) |
| 316 | 312, 315 | nfan 1899 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) |
| 317 | | nfv 1914 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡 𝑟 ∈ ℝ |
| 318 | | simp3 1139 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑟 = (𝑋 + 𝑡)) |
| 319 | 95 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑋 ∈ ℝ) |
| 320 | 232 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑡 ∈ ℝ) |
| 321 | 319, 320 | readdcld 11290 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → (𝑋 + 𝑡) ∈ ℝ) |
| 322 | 318, 321 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑟 ∈ ℝ) |
| 323 | 322 | 3exp 1120 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → 𝑟 ∈ ℝ))) |
| 324 | 323 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → 𝑟 ∈ ℝ))) |
| 325 | 316, 317,
324 | rexlimd 3266 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (∃𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡) → 𝑟 ∈ ℝ)) |
| 326 | 311, 325 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ ℝ) |
| 327 | | nfv 1914 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡(𝑄‘𝑖) < 𝑟 |
| 328 | 252 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → (𝑄‘𝑖) < (𝑋 + 𝑡)) |
| 329 | | simp3 1139 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑟 = (𝑋 + 𝑡)) |
| 330 | 328, 329 | breqtrrd 5171 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → (𝑄‘𝑖) < 𝑟) |
| 331 | 330 | 3exp 1120 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → (𝑄‘𝑖) < 𝑟))) |
| 332 | 331 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → (𝑄‘𝑖) < 𝑟))) |
| 333 | 316, 327,
332 | rexlimd 3266 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (∃𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡) → (𝑄‘𝑖) < 𝑟)) |
| 334 | 311, 333 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑄‘𝑖) < 𝑟) |
| 335 | | nfv 1914 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡 𝑟 < (𝑄‘(𝑖 + 1)) |
| 336 | 261 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → (𝑋 + 𝑡) < (𝑄‘(𝑖 + 1))) |
| 337 | 329, 336 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑟 < (𝑄‘(𝑖 + 1))) |
| 338 | 337 | 3exp 1120 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → 𝑟 < (𝑄‘(𝑖 + 1))))) |
| 339 | 338 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → 𝑟 < (𝑄‘(𝑖 + 1))))) |
| 340 | 316, 335,
339 | rexlimd 3266 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (∃𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡) → 𝑟 < (𝑄‘(𝑖 + 1)))) |
| 341 | 311, 340 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 < (𝑄‘(𝑖 + 1))) |
| 342 | 305, 306,
326, 334, 341 | eliood 45511 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 343 | 217 | ineq2d 4220 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ dom 𝐹) = (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∩
(-π[,]π))) |
| 344 | 343 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ dom 𝐹) = (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∩
(-π[,]π))) |
| 345 | | dmres 6030 |
. . . . . . . . . . . . . . . . 17
⊢ dom
(𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ dom 𝐹) |
| 346 | 345 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ dom 𝐹)) |
| 347 | | dfss 3970 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π) ↔ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∩
(-π[,]π))) |
| 348 | 60, 347 | sylib 218 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∩
(-π[,]π))) |
| 349 | 344, 346,
348 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 350 | 349 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 351 | 342, 350 | eleqtrrd 2844 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 352 | 326, 341 | ltned 11397 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ≠ (𝑄‘(𝑖 + 1))) |
| 353 | 352 | neneqd 2945 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ¬ 𝑟 = (𝑄‘(𝑖 + 1))) |
| 354 | | velsn 4642 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ {(𝑄‘(𝑖 + 1))} ↔ 𝑟 = (𝑄‘(𝑖 + 1))) |
| 355 | 353, 354 | sylnibr 329 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ¬ 𝑟 ∈ {(𝑄‘(𝑖 + 1))}) |
| 356 | 351, 355 | eldifd 3962 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))})) |
| 357 | 356 | ralrimiva 3146 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))𝑟 ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))})) |
| 358 | | dfss3 3972 |
. . . . . . . . . . 11
⊢ (ran
(𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ⊆ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))}) ↔ ∀𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))𝑟 ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))})) |
| 359 | 357, 358 | sylibr 234 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ⊆ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))})) |
| 360 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) |
| 361 | 196 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → 𝑋 ∈ ℂ) |
| 362 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → 𝑠 ∈ ℂ) |
| 363 | 361, 362 | addcomd 11463 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → (𝑋 + 𝑠) = (𝑠 + 𝑋)) |
| 364 | 363 | mpteq2dva 5242 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋))) |
| 365 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) |
| 366 | 365 | addccncf 24943 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ)) |
| 367 | 196, 366 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ)) |
| 368 | 364, 367 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) ∈ (ℂ–cn→ℂ)) |
| 369 | 368 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) ∈ (ℂ–cn→ℂ)) |
| 370 | 224 | rexrd 11311 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘𝑖) ∈
ℝ*) |
| 371 | | iocssre 13467 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐻‘𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ) → ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℝ) |
| 372 | 370, 225,
371 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℝ) |
| 373 | | ax-resscn 11212 |
. . . . . . . . . . . . . . . . . 18
⊢ ℝ
⊆ ℂ |
| 374 | 372, 373 | sstrdi 3996 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℂ) |
| 375 | 289 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ℂ ⊆
ℂ) |
| 376 | 196 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) → 𝑋 ∈ ℂ) |
| 377 | 374 | sselda 3983 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) → 𝑠 ∈ ℂ) |
| 378 | 376, 377 | addcld 11280 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℂ) |
| 379 | 360, 369,
374, 375, 378 | cncfmptssg 45886 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))–cn→ℂ)) |
| 380 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 381 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) =
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) |
| 382 | 380 | cnfldtop 24804 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(TopOpen‘ℂfld) ∈ Top |
| 383 | | unicntop 24806 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
| 384 | 383 | restid 17478 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((TopOpen‘ℂfld) ∈ Top →
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
| 385 | 382, 384 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
| 386 | 385 | eqcomi 2746 |
. . . . . . . . . . . . . . . . . 18
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
| 387 | 380, 381,
386 | cncfcn 24936 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℂ ∧ ℂ ⊆
ℂ) → (((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld))) |
| 388 | 374, 375,
387 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld))) |
| 389 | 379, 388 | eleqtrd 2843 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld))) |
| 390 | 380 | cnfldtopon 24803 |
. . . . . . . . . . . . . . . . . 18
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 391 | 390 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
| 392 | | resttopon 23169 |
. . . . . . . . . . . . . . . . 17
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))))) |
| 393 | 391, 374,
392 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))))) |
| 394 | | cncnp 23288 |
. . . . . . . . . . . . . . . 16
⊢
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) ∧
(TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) →
((𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡)))) |
| 395 | 393, 391,
394 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡)))) |
| 396 | 389, 395 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡))) |
| 397 | 396 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑡 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡)) |
| 398 | | ubioc1 13440 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐻‘𝑖) < (𝐻‘(𝑖 + 1))) → (𝐻‘(𝑖 + 1)) ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) |
| 399 | 370, 245,
174, 398 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) |
| 400 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = (𝐻‘(𝑖 + 1)) →
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡) = ((((TopOpen‘ℂfld)
↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1)))) |
| 401 | 400 | eleq2d 2827 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = (𝐻‘(𝑖 + 1)) → ((𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡) ↔ (𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))))) |
| 402 | 401 | rspccva 3621 |
. . . . . . . . . . . . 13
⊢
((∀𝑡 ∈
((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡) ∧ (𝐻‘(𝑖 + 1)) ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) → (𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1)))) |
| 403 | 397, 399,
402 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1)))) |
| 404 | | ioounsn 13517 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐻‘𝑖) < (𝐻‘(𝑖 + 1))) → (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) = ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) |
| 405 | 370, 245,
174, 404 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) = ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) |
| 406 | 259 | eqcomd 2743 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = (𝑋 + (𝐻‘(𝑖 + 1)))) |
| 407 | 406 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ 𝑠 = (𝐻‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) = (𝑋 + (𝐻‘(𝑖 + 1)))) |
| 408 | | iftrue 4531 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝐻‘(𝑖 + 1)) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑄‘(𝑖 + 1))) |
| 409 | 408 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ 𝑠 = (𝐻‘(𝑖 + 1))) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑄‘(𝑖 + 1))) |
| 410 | | oveq2 7439 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝐻‘(𝑖 + 1)) → (𝑋 + 𝑠) = (𝑋 + (𝐻‘(𝑖 + 1)))) |
| 411 | 410 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ 𝑠 = (𝐻‘(𝑖 + 1))) → (𝑋 + 𝑠) = (𝑋 + (𝐻‘(𝑖 + 1)))) |
| 412 | 407, 409,
411 | 3eqtr4d 2787 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ 𝑠 = (𝐻‘(𝑖 + 1))) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠)) |
| 413 | | iffalse 4534 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑠 = (𝐻‘(𝑖 + 1)) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) |
| 414 | 413 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) |
| 415 | | eqidd 2738 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) = (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) |
| 416 | | oveq2 7439 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑠 → (𝑋 + 𝑡) = (𝑋 + 𝑠)) |
| 417 | 416 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) ∧ 𝑡 = 𝑠) → (𝑋 + 𝑡) = (𝑋 + 𝑠)) |
| 418 | | velsn 4642 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ {(𝐻‘(𝑖 + 1))} ↔ 𝑠 = (𝐻‘(𝑖 + 1))) |
| 419 | 418 | notbii 320 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑠 ∈ {(𝐻‘(𝑖 + 1))} ↔ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) |
| 420 | | elun 4153 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↔ (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘(𝑖 + 1))})) |
| 421 | 420 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) → (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘(𝑖 + 1))})) |
| 422 | 421 | orcomd 872 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) → (𝑠 ∈ {(𝐻‘(𝑖 + 1))} ∨ 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))))) |
| 423 | 422 | ord 865 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) → (¬ 𝑠 ∈ {(𝐻‘(𝑖 + 1))} → 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))))) |
| 424 | 419, 423 | biimtrrid 243 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) → (¬ 𝑠 = (𝐻‘(𝑖 + 1)) → 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))))) |
| 425 | 424 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) |
| 426 | 425 | adantll 714 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) |
| 427 | 95 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) → 𝑋 ∈ ℝ) |
| 428 | | elioore 13417 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) → 𝑠 ∈ ℝ) |
| 429 | 428 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑠 ∈ ℝ) |
| 430 | | elsni 4643 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 ∈ {(𝐻‘(𝑖 + 1))} → 𝑠 = (𝐻‘(𝑖 + 1))) |
| 431 | 430 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘(𝑖 + 1))}) → 𝑠 = (𝐻‘(𝑖 + 1))) |
| 432 | 225 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘(𝑖 + 1))}) → (𝐻‘(𝑖 + 1)) ∈ ℝ) |
| 433 | 431, 432 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘(𝑖 + 1))}) → 𝑠 ∈ ℝ) |
| 434 | 429, 433 | jaodan 960 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘(𝑖 + 1))})) → 𝑠 ∈ ℝ) |
| 435 | 420, 434 | sylan2b 594 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) → 𝑠 ∈ ℝ) |
| 436 | 427, 435 | readdcld 11290 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) → (𝑋 + 𝑠) ∈ ℝ) |
| 437 | 436 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → (𝑋 + 𝑠) ∈ ℝ) |
| 438 | 415, 417,
426, 437 | fvmptd 7023 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠) = (𝑋 + 𝑠)) |
| 439 | 414, 438 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠)) |
| 440 | 412, 439 | pm2.61dan 813 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠)) |
| 441 | 405, 440 | mpteq12dva 5231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠))) |
| 442 | 405 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) =
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))))) |
| 443 | 442 | oveq1d 7446 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
(((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld)) =
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))) |
| 444 | 443 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
((((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))) =
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1)))) |
| 445 | 403, 441,
444 | 3eltr4d 2856 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) ∈
((((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1)))) |
| 446 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) =
((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) |
| 447 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) |
| 448 | 264, 301 | fssd 6753 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)):((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))⟶ℂ) |
| 449 | 225 | recnd 11289 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) ∈ ℂ) |
| 450 | 446, 380,
447, 448, 299, 449 | ellimc 25908 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) ∈ ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) limℂ (𝐻‘(𝑖 + 1))) ↔ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) ∈
((((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))))) |
| 451 | 445, 450 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) limℂ (𝐻‘(𝑖 + 1)))) |
| 452 | 359, 451,
66 | limccog 45635 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) limℂ (𝐻‘(𝑖 + 1)))) |
| 453 | 266, 286 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) = (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡)))) |
| 454 | 453 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) limℂ (𝐻‘(𝑖 + 1))) = ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) limℂ (𝐻‘(𝑖 + 1)))) |
| 455 | 452, 454 | eleqtrd 2843 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) limℂ (𝐻‘(𝑖 + 1)))) |
| 456 | 40 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑄‘𝑖) ∈ ℝ) |
| 457 | 456, 334 | gtned 11396 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ≠ (𝑄‘𝑖)) |
| 458 | 457 | neneqd 2945 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ¬ 𝑟 = (𝑄‘𝑖)) |
| 459 | | velsn 4642 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ {(𝑄‘𝑖)} ↔ 𝑟 = (𝑄‘𝑖)) |
| 460 | 458, 459 | sylnibr 329 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ¬ 𝑟 ∈ {(𝑄‘𝑖)}) |
| 461 | 351, 460 | eldifd 3962 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)})) |
| 462 | 461 | ralrimiva 3146 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))𝑟 ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)})) |
| 463 | | dfss3 3972 |
. . . . . . . . . . 11
⊢ (ran
(𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ⊆ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)}) ↔ ∀𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))𝑟 ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)})) |
| 464 | 462, 463 | sylibr 234 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ⊆ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)})) |
| 465 | | icossre 13468 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐻‘𝑖) ∈ ℝ ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ*) →
((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℝ) |
| 466 | 224, 245,
465 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℝ) |
| 467 | 466, 373 | sstrdi 3996 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℂ) |
| 468 | 196 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) → 𝑋 ∈ ℂ) |
| 469 | 467 | sselda 3983 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) → 𝑠 ∈ ℂ) |
| 470 | 468, 469 | addcld 11280 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℂ) |
| 471 | 360, 369,
467, 375, 470 | cncfmptssg 45886 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))–cn→ℂ)) |
| 472 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) =
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) |
| 473 | 380, 472,
386 | cncfcn 24936 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℂ ∧ ℂ ⊆
ℂ) → (((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld))) |
| 474 | 467, 375,
473 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld))) |
| 475 | 471, 474 | eleqtrd 2843 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld))) |
| 476 | | resttopon 23169 |
. . . . . . . . . . . . . . . . 17
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))))) |
| 477 | 391, 467,
476 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))))) |
| 478 | | cncnp 23288 |
. . . . . . . . . . . . . . . 16
⊢
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) ∧
(TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) →
((𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡)))) |
| 479 | 477, 391,
478 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡)))) |
| 480 | 475, 479 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡))) |
| 481 | 480 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑡 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡)) |
| 482 | | lbico1 13441 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐻‘𝑖) < (𝐻‘(𝑖 + 1))) → (𝐻‘𝑖) ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) |
| 483 | 370, 245,
174, 482 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘𝑖) ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) |
| 484 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = (𝐻‘𝑖) →
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡) = ((((TopOpen‘ℂfld)
↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘𝑖))) |
| 485 | 484 | eleq2d 2827 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = (𝐻‘𝑖) → ((𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡) ↔ (𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘𝑖)))) |
| 486 | 485 | rspccva 3621 |
. . . . . . . . . . . . 13
⊢
((∀𝑡 ∈
((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡) ∧ (𝐻‘𝑖) ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) → (𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘𝑖))) |
| 487 | 481, 483,
486 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘𝑖))) |
| 488 | | uncom 4158 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) = ({(𝐻‘𝑖)} ∪ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) |
| 489 | | snunioo 13518 |
. . . . . . . . . . . . . . 15
⊢ (((𝐻‘𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐻‘𝑖) < (𝐻‘(𝑖 + 1))) → ({(𝐻‘𝑖)} ∪ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) = ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) |
| 490 | 370, 245,
174, 489 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ({(𝐻‘𝑖)} ∪ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) = ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) |
| 491 | 488, 490 | eqtrid 2789 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) = ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) |
| 492 | | iftrue 4531 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝐻‘𝑖) → if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑄‘𝑖)) |
| 493 | 492 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = (𝐻‘𝑖)) → if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑄‘𝑖)) |
| 494 | 240 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = (𝐻‘𝑖)) → (𝑄‘𝑖) = (𝑋 + (𝐻‘𝑖))) |
| 495 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = (𝐻‘𝑖) → (𝑋 + 𝑠) = (𝑋 + (𝐻‘𝑖))) |
| 496 | 495 | eqcomd 2743 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝐻‘𝑖) → (𝑋 + (𝐻‘𝑖)) = (𝑋 + 𝑠)) |
| 497 | 496 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = (𝐻‘𝑖)) → (𝑋 + (𝐻‘𝑖)) = (𝑋 + 𝑠)) |
| 498 | 493, 494,
497 | 3eqtrd 2781 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = (𝐻‘𝑖)) → if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠)) |
| 499 | 498 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) ∧ 𝑠 = (𝐻‘𝑖)) → if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠)) |
| 500 | | iffalse 4534 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑠 = (𝐻‘𝑖) → if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) |
| 501 | 500 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) ∧ ¬ 𝑠 = (𝐻‘𝑖)) → if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) |
| 502 | | eqidd 2738 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) ∧ ¬ 𝑠 = (𝐻‘𝑖)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) = (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) |
| 503 | 416 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) ∧ ¬ 𝑠 = (𝐻‘𝑖)) ∧ 𝑡 = 𝑠) → (𝑋 + 𝑡) = (𝑋 + 𝑠)) |
| 504 | | velsn 4642 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ {(𝐻‘𝑖)} ↔ 𝑠 = (𝐻‘𝑖)) |
| 505 | 504 | notbii 320 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑠 ∈ {(𝐻‘𝑖)} ↔ ¬ 𝑠 = (𝐻‘𝑖)) |
| 506 | | elun 4153 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) ↔ (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘𝑖)})) |
| 507 | 506 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) → (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘𝑖)})) |
| 508 | 507 | orcomd 872 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) → (𝑠 ∈ {(𝐻‘𝑖)} ∨ 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))))) |
| 509 | 508 | ord 865 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) → (¬ 𝑠 ∈ {(𝐻‘𝑖)} → 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))))) |
| 510 | 505, 509 | biimtrrid 243 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) → (¬ 𝑠 = (𝐻‘𝑖) → 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))))) |
| 511 | 510 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) ∧ ¬ 𝑠 = (𝐻‘𝑖)) → 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) |
| 512 | 511 | adantll 714 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) ∧ ¬ 𝑠 = (𝐻‘𝑖)) → 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) |
| 513 | 95 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) → 𝑋 ∈ ℝ) |
| 514 | | elsni 4643 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 ∈ {(𝐻‘𝑖)} → 𝑠 = (𝐻‘𝑖)) |
| 515 | 514 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘𝑖)}) → 𝑠 = (𝐻‘𝑖)) |
| 516 | 224 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘𝑖)}) → (𝐻‘𝑖) ∈ ℝ) |
| 517 | 515, 516 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘𝑖)}) → 𝑠 ∈ ℝ) |
| 518 | 429, 517 | jaodan 960 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘𝑖)})) → 𝑠 ∈ ℝ) |
| 519 | 506, 518 | sylan2b 594 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) → 𝑠 ∈ ℝ) |
| 520 | 513, 519 | readdcld 11290 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) → (𝑋 + 𝑠) ∈ ℝ) |
| 521 | 520 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) ∧ ¬ 𝑠 = (𝐻‘𝑖)) → (𝑋 + 𝑠) ∈ ℝ) |
| 522 | 502, 503,
512, 521 | fvmptd 7023 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) ∧ ¬ 𝑠 = (𝐻‘𝑖)) → ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠) = (𝑋 + 𝑠)) |
| 523 | 501, 522 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) ∧ ¬ 𝑠 = (𝐻‘𝑖)) → if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠)) |
| 524 | 499, 523 | pm2.61dan 813 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) → if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠)) |
| 525 | 491, 524 | mpteq12dva 5231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) ↦ if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠))) |
| 526 | 491 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) = ((TopOpen‘ℂfld)
↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))))) |
| 527 | 526 | oveq1d 7446 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
(((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) CnP
(TopOpen‘ℂfld)) =
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))) |
| 528 | 527 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
((((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝐻‘𝑖)) = ((((TopOpen‘ℂfld)
↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘𝑖))) |
| 529 | 487, 525,
528 | 3eltr4d 2856 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) ↦ if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) ∈
((((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝐻‘𝑖))) |
| 530 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) = ((TopOpen‘ℂfld)
↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) |
| 531 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) ↦ if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) ↦ if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) |
| 532 | 224 | recnd 11289 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘𝑖) ∈ ℂ) |
| 533 | 530, 380,
531, 448, 299, 532 | ellimc 25908 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) ∈ ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) limℂ (𝐻‘𝑖)) ↔ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) ↦ if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) ∈
((((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝐻‘𝑖)))) |
| 534 | 529, 533 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) limℂ (𝐻‘𝑖))) |
| 535 | 464, 534,
69 | limccog 45635 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) limℂ (𝐻‘𝑖))) |
| 536 | 453 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) limℂ (𝐻‘𝑖)) = ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) limℂ (𝐻‘𝑖))) |
| 537 | 535, 536 | eleqtrd 2843 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) limℂ (𝐻‘𝑖))) |
| 538 | 224, 225,
304, 455, 537 | iblcncfioo 45993 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) ∈
𝐿1) |
| 539 | 30 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝐹:(-π[,]π)⟶ℂ) |
| 540 | 49 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → -π ∈
ℝ*) |
| 541 | 51 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → π ∈
ℝ*) |
| 542 | 21 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
| 543 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀)) |
| 544 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) |
| 545 | 163, 173 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1))) = (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) |
| 546 | 545 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1))) = (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) |
| 547 | 544, 546 | eleqtrd 2843 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) |
| 548 | 547, 116 | syldan 591 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
| 549 | 540, 541,
542, 543, 548 | fourierdlem1 46123 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) ∈ (-π[,]π)) |
| 550 | 539, 549 | ffvelcdmd 7105 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑡)) ∈ ℂ) |
| 551 | 224, 225,
538, 550 | ibliooicc 45986 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) ∈
𝐿1) |
| 552 | 14, 20, 159, 174, 223, 551 | itgspltprt 45994 |
. . . . 5
⊢ (𝜑 → ∫((𝐻‘0)[,](𝐻‘𝑀))(𝐹‘(𝑋 + 𝑡)) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
| 553 | 545 | itgeq1d 45972 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))(𝐹‘(𝑋 + 𝑡)) d𝑡 = ∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
| 554 | 553 | sumeq2dv 15738 |
. . . . 5
⊢ (𝜑 → Σ𝑖 ∈ (0..^𝑀)∫((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))(𝐹‘(𝑋 + 𝑡)) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
| 555 | 552, 554 | eqtrd 2777 |
. . . 4
⊢ (𝜑 → ∫((𝐻‘0)[,](𝐻‘𝑀))(𝐹‘(𝑋 + 𝑡)) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
| 556 | 125, 155,
555 | 3eqtrd 2781 |
. . 3
⊢ (𝜑 → ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠 = Σ𝑖 ∈ (0..^𝑀)∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
| 557 | 121, 556 | eqtr4d 2780 |
. 2
⊢ (𝜑 → Σ𝑖 ∈ (0..^𝑀)∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑡) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠) |
| 558 | 13, 76, 557 | 3eqtrd 2781 |
1
⊢ (𝜑 → ∫(-π[,]π)(𝐹‘𝑡) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠) |