Step | Hyp | Ref
| Expression |
1 | | fourierdlem93.4 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
2 | | fourierdlem93.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | | fourierdlem93.1 |
. . . . . . . . . 10
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
4 | 3 | fourierdlem2 41950 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
5 | 2, 4 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
6 | 1, 5 | mpbid 233 |
. . . . . . 7
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
7 | 6 | simprd 496 |
. . . . . 6
⊢ (𝜑 → (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
8 | 7 | simplld 764 |
. . . . 5
⊢ (𝜑 → (𝑄‘0) = -π) |
9 | 8 | eqcomd 2800 |
. . . 4
⊢ (𝜑 → -π = (𝑄‘0)) |
10 | 7 | simplrd 766 |
. . . . 5
⊢ (𝜑 → (𝑄‘𝑀) = π) |
11 | 10 | eqcomd 2800 |
. . . 4
⊢ (𝜑 → π = (𝑄‘𝑀)) |
12 | 9, 11 | oveq12d 7037 |
. . 3
⊢ (𝜑 → (-π[,]π) = ((𝑄‘0)[,](𝑄‘𝑀))) |
13 | 12 | itgeq1d 41797 |
. 2
⊢ (𝜑 → ∫(-π[,]π)(𝐹‘𝑡) d𝑡 = ∫((𝑄‘0)[,](𝑄‘𝑀))(𝐹‘𝑡) d𝑡) |
14 | | 0zd 11843 |
. . 3
⊢ (𝜑 → 0 ∈
ℤ) |
15 | | nnuz 12130 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
16 | 2, 15 | syl6eleq 2892 |
. . . 4
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
17 | | 1e0p1 11990 |
. . . . . 6
⊢ 1 = (0 +
1) |
18 | 17 | a1i 11 |
. . . . 5
⊢ (𝜑 → 1 = (0 +
1)) |
19 | 18 | fveq2d 6545 |
. . . 4
⊢ (𝜑 →
(ℤ≥‘1) = (ℤ≥‘(0 +
1))) |
20 | 16, 19 | eleqtrd 2884 |
. . 3
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(0 +
1))) |
21 | 3, 2, 1 | fourierdlem15 41963 |
. . . 4
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(-π[,]π)) |
22 | | pire 24727 |
. . . . . . 7
⊢ π
∈ ℝ |
23 | 22 | renegcli 10797 |
. . . . . 6
⊢ -π
∈ ℝ |
24 | | iccssre 12668 |
. . . . . 6
⊢ ((-π
∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆
ℝ) |
25 | 23, 22, 24 | mp2an 688 |
. . . . 5
⊢
(-π[,]π) ⊆ ℝ |
26 | 25 | a1i 11 |
. . . 4
⊢ (𝜑 → (-π[,]π) ⊆
ℝ) |
27 | 21, 26 | fssd 6399 |
. . 3
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
28 | 7 | simprd 496 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
29 | 28 | r19.21bi 3174 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
30 | | fourierdlem93.6 |
. . . . 5
⊢ (𝜑 → 𝐹:(-π[,]π)⟶ℂ) |
31 | 30 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → 𝐹:(-π[,]π)⟶ℂ) |
32 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → 𝑡 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) |
33 | 12 | eqcomd 2800 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘0)[,](𝑄‘𝑀)) = (-π[,]π)) |
34 | 33 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → ((𝑄‘0)[,](𝑄‘𝑀)) = (-π[,]π)) |
35 | 32, 34 | eleqtrd 2884 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → 𝑡 ∈ (-π[,]π)) |
36 | 31, 35 | ffvelrnd 6720 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → (𝐹‘𝑡) ∈ ℂ) |
37 | 27 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
38 | | elfzofz 12903 |
. . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
39 | 38 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
40 | 37, 39 | ffvelrnd 6720 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
41 | | fzofzp1 12984 |
. . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
42 | 41 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
43 | 37, 42 | ffvelrnd 6720 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
44 | 30 | feqmptd 6604 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 = (𝑡 ∈ (-π[,]π) ↦ (𝐹‘𝑡))) |
45 | 44 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹 = (𝑡 ∈ (-π[,]π) ↦ (𝐹‘𝑡))) |
46 | 45 | reseq1d 5736 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑡 ∈ (-π[,]π) ↦ (𝐹‘𝑡)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
47 | | ioossicc 12672 |
. . . . . . . . . . 11
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) |
48 | 47 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
49 | 23 | rexri 10548 |
. . . . . . . . . . . . . 14
⊢ -π
∈ ℝ* |
50 | 49 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → -π ∈
ℝ*) |
51 | 22 | rexri 10548 |
. . . . . . . . . . . . . 14
⊢ π
∈ ℝ* |
52 | 51 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → π ∈
ℝ*) |
53 | 21 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
54 | | simplr 765 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀)) |
55 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
56 | 50, 52, 53, 54, 55 | fourierdlem1 41949 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑡 ∈ (-π[,]π)) |
57 | 56 | ralrimiva 3148 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))𝑡 ∈ (-π[,]π)) |
58 | | dfss3 3880 |
. . . . . . . . . . 11
⊢ (((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π) ↔
∀𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))𝑡 ∈ (-π[,]π)) |
59 | 57, 58 | sylibr 235 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
60 | 48, 59 | sstrd 3901 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
61 | 60 | resmptd 5792 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (-π[,]π) ↦ (𝐹‘𝑡)) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡))) |
62 | 46, 61 | eqtrd 2830 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡))) |
63 | 62 | eqcomd 2800 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) = (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
64 | | fourierdlem93.7 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
65 | 63, 64 | eqeltrd 2882 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
66 | | fourierdlem93.9 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
67 | 62 | oveq1d 7034 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) limℂ (𝑄‘(𝑖 + 1)))) |
68 | 66, 67 | eleqtrd 2884 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) limℂ (𝑄‘(𝑖 + 1)))) |
69 | | fourierdlem93.8 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
70 | 62 | oveq1d 7034 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) limℂ (𝑄‘𝑖))) |
71 | 69, 70 | eleqtrd 2884 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) limℂ (𝑄‘𝑖))) |
72 | 40, 43, 65, 68, 71 | iblcncfioo 41818 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) ∈
𝐿1) |
73 | 30 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐹:(-π[,]π)⟶ℂ) |
74 | 73, 56 | ffvelrnd 6720 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹‘𝑡) ∈ ℂ) |
75 | 40, 43, 72, 74 | ibliooicc 41811 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑡)) ∈
𝐿1) |
76 | 14, 20, 27, 29, 36, 75 | itgspltprt 41819 |
. 2
⊢ (𝜑 → ∫((𝑄‘0)[,](𝑄‘𝑀))(𝐹‘𝑡) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑡) d𝑡) |
77 | | fvres 6560 |
. . . . . . . 8
⊢ (𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡) = (𝐹‘𝑡)) |
78 | 77 | eqcomd 2800 |
. . . . . . 7
⊢ (𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) → (𝐹‘𝑡) = ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡)) |
79 | 78 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹‘𝑡) = ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡)) |
80 | 79 | itgeq2dv 24065 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑡) d𝑡 = ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡) d𝑡) |
81 | | eqid 2794 |
. . . . . 6
⊢ (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) = (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) |
82 | 30 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:(-π[,]π)⟶ℂ) |
83 | 82, 59 | fssresd 6416 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ) |
84 | 48 | resabs1d 5768 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
85 | 84, 64 | eqeltrd 2882 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
86 | 84 | oveq1d 7034 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
87 | 40, 43, 29, 83 | limcicciooub 41473 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
88 | 86, 87 | eqtr3d 2832 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
89 | 66, 88 | eleqtrd 2884 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
90 | 84 | eqcomd 2800 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
91 | 90 | oveq1d 7034 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = (((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
92 | 40, 43, 29, 83 | limciccioolb 41457 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
93 | 91, 92 | eqtrd 2830 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
94 | 69, 93 | eleqtrd 2884 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
95 | | fourierdlem93.5 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℝ) |
96 | 95 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ) |
97 | 81, 40, 43, 29, 83, 85, 89, 94, 96 | fourierdlem82 42029 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡) d𝑡 = ∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) d𝑡) |
98 | 40 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑄‘𝑖) ∈ ℝ) |
99 | 43 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
100 | 95 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑋 ∈ ℝ) |
101 | 98, 100 | resubcld 10918 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝑄‘𝑖) − 𝑋) ∈ ℝ) |
102 | 99, 100 | resubcld 10918 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ) |
103 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) |
104 | | eliccre 41336 |
. . . . . . . . . 10
⊢ ((((𝑄‘𝑖) − 𝑋) ∈ ℝ ∧ ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑡 ∈ ℝ) |
105 | 101, 102,
103, 104 | syl3anc 1364 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑡 ∈ ℝ) |
106 | 100, 105 | readdcld 10519 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑋 + 𝑡) ∈ ℝ) |
107 | | elicc2 12651 |
. . . . . . . . . . . 12
⊢ ((((𝑄‘𝑖) − 𝑋) ∈ ℝ ∧ ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ) → (𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋)) ↔ (𝑡 ∈ ℝ ∧ ((𝑄‘𝑖) − 𝑋) ≤ 𝑡 ∧ 𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋)))) |
108 | 101, 102,
107 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋)) ↔ (𝑡 ∈ ℝ ∧ ((𝑄‘𝑖) − 𝑋) ≤ 𝑡 ∧ 𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋)))) |
109 | 103, 108 | mpbid 233 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑡 ∈ ℝ ∧ ((𝑄‘𝑖) − 𝑋) ≤ 𝑡 ∧ 𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋))) |
110 | 109 | simp2d 1136 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝑄‘𝑖) − 𝑋) ≤ 𝑡) |
111 | 98, 100, 105 | lesubadd2d 11089 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (((𝑄‘𝑖) − 𝑋) ≤ 𝑡 ↔ (𝑄‘𝑖) ≤ (𝑋 + 𝑡))) |
112 | 110, 111 | mpbid 233 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑄‘𝑖) ≤ (𝑋 + 𝑡)) |
113 | 109 | simp3d 1137 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋)) |
114 | 100, 105,
99 | leaddsub2d 11092 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝑋 + 𝑡) ≤ (𝑄‘(𝑖 + 1)) ↔ 𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋))) |
115 | 113, 114 | mpbird 258 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑋 + 𝑡) ≤ (𝑄‘(𝑖 + 1))) |
116 | 98, 99, 106, 112, 115 | eliccd 41334 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑋 + 𝑡) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
117 | | fvres 6560 |
. . . . . . 7
⊢ ((𝑋 + 𝑡) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡))) |
118 | 116, 117 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡))) |
119 | 118 | itgeq2dv 24065 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))((𝐹 ↾ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) d𝑡 = ∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
120 | 80, 97, 119 | 3eqtrd 2834 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑡) d𝑡 = ∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
121 | 120 | sumeq2dv 14893 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ (0..^𝑀)∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑡) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
122 | | oveq2 7027 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → (𝑋 + 𝑠) = (𝑋 + 𝑡)) |
123 | 122 | fveq2d 6545 |
. . . . . 6
⊢ (𝑠 = 𝑡 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑡))) |
124 | 123 | cbvitgv 24060 |
. . . . 5
⊢
∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡 |
125 | 124 | a1i 11 |
. . . 4
⊢ (𝜑 → ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
126 | | fourierdlem93.2 |
. . . . . . . . 9
⊢ 𝐻 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋)) |
127 | 126 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋))) |
128 | | fveq2 6541 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → (𝑄‘𝑖) = (𝑄‘0)) |
129 | 128 | oveq1d 7034 |
. . . . . . . . 9
⊢ (𝑖 = 0 → ((𝑄‘𝑖) − 𝑋) = ((𝑄‘0) − 𝑋)) |
130 | 129 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑄‘𝑖) − 𝑋) = ((𝑄‘0) − 𝑋)) |
131 | 2 | nnzd 11936 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
132 | 14, 131, 14 | 3jca 1121 |
. . . . . . . . 9
⊢ (𝜑 → (0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧ 0
∈ ℤ)) |
133 | | 0le0 11588 |
. . . . . . . . . . 11
⊢ 0 ≤
0 |
134 | 133 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ 0) |
135 | | 0red 10493 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈
ℝ) |
136 | 2 | nnred 11503 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℝ) |
137 | 2 | nngt0d 11536 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 < 𝑀) |
138 | 135, 136,
137 | ltled 10637 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ 𝑀) |
139 | 134, 138 | jca 512 |
. . . . . . . . 9
⊢ (𝜑 → (0 ≤ 0 ∧ 0 ≤
𝑀)) |
140 | | elfz2 12749 |
. . . . . . . . 9
⊢ (0 ∈
(0...𝑀) ↔ ((0 ∈
ℤ ∧ 𝑀 ∈
ℤ ∧ 0 ∈ ℤ) ∧ (0 ≤ 0 ∧ 0 ≤ 𝑀))) |
141 | 132, 139,
140 | sylanbrc 583 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
142 | 8, 23 | syl6eqel 2890 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
143 | 142, 95 | resubcld 10918 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄‘0) − 𝑋) ∈ ℝ) |
144 | 127, 130,
141, 143 | fvmptd 6644 |
. . . . . . 7
⊢ (𝜑 → (𝐻‘0) = ((𝑄‘0) − 𝑋)) |
145 | 8 | oveq1d 7034 |
. . . . . . 7
⊢ (𝜑 → ((𝑄‘0) − 𝑋) = (-π − 𝑋)) |
146 | 144, 145 | eqtr2d 2831 |
. . . . . 6
⊢ (𝜑 → (-π − 𝑋) = (𝐻‘0)) |
147 | | fveq2 6541 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑀 → (𝑄‘𝑖) = (𝑄‘𝑀)) |
148 | 147 | oveq1d 7034 |
. . . . . . . . 9
⊢ (𝑖 = 𝑀 → ((𝑄‘𝑖) − 𝑋) = ((𝑄‘𝑀) − 𝑋)) |
149 | 148 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 𝑀) → ((𝑄‘𝑖) − 𝑋) = ((𝑄‘𝑀) − 𝑋)) |
150 | 14, 131, 131 | 3jca 1121 |
. . . . . . . . 9
⊢ (𝜑 → (0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧
𝑀 ∈
ℤ)) |
151 | 136 | leidd 11056 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ≤ 𝑀) |
152 | 138, 151 | jca 512 |
. . . . . . . . 9
⊢ (𝜑 → (0 ≤ 𝑀 ∧ 𝑀 ≤ 𝑀)) |
153 | | elfz2 12749 |
. . . . . . . . 9
⊢ (𝑀 ∈ (0...𝑀) ↔ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤
𝑀 ∧ 𝑀 ≤ 𝑀))) |
154 | 150, 152,
153 | sylanbrc 583 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
155 | 10, 22 | syl6eqel 2890 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘𝑀) ∈ ℝ) |
156 | 155, 95 | resubcld 10918 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄‘𝑀) − 𝑋) ∈ ℝ) |
157 | 127, 149,
154, 156 | fvmptd 6644 |
. . . . . . 7
⊢ (𝜑 → (𝐻‘𝑀) = ((𝑄‘𝑀) − 𝑋)) |
158 | 10 | oveq1d 7034 |
. . . . . . 7
⊢ (𝜑 → ((𝑄‘𝑀) − 𝑋) = (π − 𝑋)) |
159 | 157, 158 | eqtr2d 2831 |
. . . . . 6
⊢ (𝜑 → (π − 𝑋) = (𝐻‘𝑀)) |
160 | 146, 159 | oveq12d 7037 |
. . . . 5
⊢ (𝜑 → ((-π − 𝑋)[,](π − 𝑋)) = ((𝐻‘0)[,](𝐻‘𝑀))) |
161 | 160 | itgeq1d 41797 |
. . . 4
⊢ (𝜑 → ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡 = ∫((𝐻‘0)[,](𝐻‘𝑀))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
162 | 27 | ffvelrnda 6719 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
163 | 95 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ) |
164 | 162, 163 | resubcld 10918 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑄‘𝑖) − 𝑋) ∈ ℝ) |
165 | 164, 126 | fmptd 6744 |
. . . . . 6
⊢ (𝜑 → 𝐻:(0...𝑀)⟶ℝ) |
166 | 40, 43, 96, 29 | ltsub1dd 11102 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − 𝑋) < ((𝑄‘(𝑖 + 1)) − 𝑋)) |
167 | 39, 164 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − 𝑋) ∈ ℝ) |
168 | 126 | fvmpt2 6648 |
. . . . . . . 8
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑄‘𝑖) − 𝑋) ∈ ℝ) → (𝐻‘𝑖) = ((𝑄‘𝑖) − 𝑋)) |
169 | 39, 167, 168 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘𝑖) = ((𝑄‘𝑖) − 𝑋)) |
170 | | fveq2 6541 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝑄‘𝑖) = (𝑄‘𝑗)) |
171 | 170 | oveq1d 7034 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖) − 𝑋) = ((𝑄‘𝑗) − 𝑋)) |
172 | 171 | cbvmptv 5064 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) − 𝑋)) |
173 | 126, 172 | eqtri 2818 |
. . . . . . . . 9
⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) − 𝑋)) |
174 | 173 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐻 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄‘𝑗) − 𝑋))) |
175 | | fveq2 6541 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑖 + 1) → (𝑄‘𝑗) = (𝑄‘(𝑖 + 1))) |
176 | 175 | oveq1d 7034 |
. . . . . . . . 9
⊢ (𝑗 = (𝑖 + 1) → ((𝑄‘𝑗) − 𝑋) = ((𝑄‘(𝑖 + 1)) − 𝑋)) |
177 | 176 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑄‘𝑗) − 𝑋) = ((𝑄‘(𝑖 + 1)) − 𝑋)) |
178 | 43, 96 | resubcld 10918 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ) |
179 | 174, 177,
42, 178 | fvmptd 6644 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) = ((𝑄‘(𝑖 + 1)) − 𝑋)) |
180 | 166, 169,
179 | 3brtr4d 4996 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘𝑖) < (𝐻‘(𝑖 + 1))) |
181 | | frn 6391 |
. . . . . . . . 9
⊢ (𝐹:(-π[,]π)⟶ℂ
→ ran 𝐹 ⊆
ℂ) |
182 | 30, 181 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 ⊆ ℂ) |
183 | 182 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → ran 𝐹 ⊆ ℂ) |
184 | | ffun 6388 |
. . . . . . . . . 10
⊢ (𝐹:(-π[,]π)⟶ℂ
→ Fun 𝐹) |
185 | 30, 184 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝐹) |
186 | 185 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → Fun 𝐹) |
187 | 23 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → -π ∈
ℝ) |
188 | 22 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → π ∈
ℝ) |
189 | 95 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → 𝑋 ∈ ℝ) |
190 | 144, 143 | eqeltrd 2882 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐻‘0) ∈ ℝ) |
191 | 190 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝐻‘0) ∈ ℝ) |
192 | 157, 156 | eqeltrd 2882 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐻‘𝑀) ∈ ℝ) |
193 | 192 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝐻‘𝑀) ∈ ℝ) |
194 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) |
195 | | eliccre 41336 |
. . . . . . . . . . . 12
⊢ (((𝐻‘0) ∈ ℝ ∧
(𝐻‘𝑀) ∈ ℝ ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → 𝑡 ∈ ℝ) |
196 | 191, 193,
194, 195 | syl3anc 1364 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → 𝑡 ∈ ℝ) |
197 | 189, 196 | readdcld 10519 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝑋 + 𝑡) ∈ ℝ) |
198 | 128 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝑄‘𝑖) = (𝑄‘0)) |
199 | 198 | oveq1d 7034 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑄‘𝑖) − 𝑋) = ((𝑄‘0) − 𝑋)) |
200 | 127, 199,
141, 143 | fvmptd 6644 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐻‘0) = ((𝑄‘0) − 𝑋)) |
201 | 200 | oveq2d 7035 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 + (𝐻‘0)) = (𝑋 + ((𝑄‘0) − 𝑋))) |
202 | 95 | recnd 10518 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ ℂ) |
203 | 142 | recnd 10518 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘0) ∈ ℂ) |
204 | 202, 203 | pncan3d 10850 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 + ((𝑄‘0) − 𝑋)) = (𝑄‘0)) |
205 | 201, 204,
8 | 3eqtrrd 2835 |
. . . . . . . . . . . 12
⊢ (𝜑 → -π = (𝑋 + (𝐻‘0))) |
206 | 205 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → -π = (𝑋 + (𝐻‘0))) |
207 | | elicc2 12651 |
. . . . . . . . . . . . . . 15
⊢ (((𝐻‘0) ∈ ℝ ∧
(𝐻‘𝑀) ∈ ℝ) → (𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀)) ↔ (𝑡 ∈ ℝ ∧ (𝐻‘0) ≤ 𝑡 ∧ 𝑡 ≤ (𝐻‘𝑀)))) |
208 | 191, 193,
207 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀)) ↔ (𝑡 ∈ ℝ ∧ (𝐻‘0) ≤ 𝑡 ∧ 𝑡 ≤ (𝐻‘𝑀)))) |
209 | 194, 208 | mpbid 233 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝑡 ∈ ℝ ∧ (𝐻‘0) ≤ 𝑡 ∧ 𝑡 ≤ (𝐻‘𝑀))) |
210 | 209 | simp2d 1136 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝐻‘0) ≤ 𝑡) |
211 | 191, 196,
189, 210 | leadd2dd 11105 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝑋 + (𝐻‘0)) ≤ (𝑋 + 𝑡)) |
212 | 206, 211 | eqbrtrd 4986 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → -π ≤ (𝑋 + 𝑡)) |
213 | 209 | simp3d 1137 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → 𝑡 ≤ (𝐻‘𝑀)) |
214 | 196, 193,
189, 213 | leadd2dd 11105 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝑋 + 𝑡) ≤ (𝑋 + (𝐻‘𝑀))) |
215 | 157 | oveq2d 7035 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 + (𝐻‘𝑀)) = (𝑋 + ((𝑄‘𝑀) − 𝑋))) |
216 | 155 | recnd 10518 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘𝑀) ∈ ℂ) |
217 | 202, 216 | pncan3d 10850 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 + ((𝑄‘𝑀) − 𝑋)) = (𝑄‘𝑀)) |
218 | 215, 217,
10 | 3eqtrrd 2835 |
. . . . . . . . . . . 12
⊢ (𝜑 → π = (𝑋 + (𝐻‘𝑀))) |
219 | 218 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → π = (𝑋 + (𝐻‘𝑀))) |
220 | 214, 219 | breqtrrd 4992 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝑋 + 𝑡) ≤ π) |
221 | 187, 188,
197, 212, 220 | eliccd 41334 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝑋 + 𝑡) ∈ (-π[,]π)) |
222 | | fdm 6393 |
. . . . . . . . . . . 12
⊢ (𝐹:(-π[,]π)⟶ℂ
→ dom 𝐹 =
(-π[,]π)) |
223 | 30, 222 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = (-π[,]π)) |
224 | 223 | eqcomd 2800 |
. . . . . . . . . 10
⊢ (𝜑 → (-π[,]π) = dom 𝐹) |
225 | 224 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (-π[,]π) = dom 𝐹) |
226 | 221, 225 | eleqtrd 2884 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝑋 + 𝑡) ∈ dom 𝐹) |
227 | | fvelrn 6712 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ (𝑋 + 𝑡) ∈ dom 𝐹) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹) |
228 | 186, 226,
227 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹) |
229 | 183, 228 | sseldd 3892 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻‘𝑀))) → (𝐹‘(𝑋 + 𝑡)) ∈ ℂ) |
230 | 169, 167 | eqeltrd 2882 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘𝑖) ∈ ℝ) |
231 | 179, 178 | eqeltrd 2882 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) ∈ ℝ) |
232 | 82, 60 | fssresd 6416 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
233 | 40 | rexrd 10540 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈
ℝ*) |
234 | 233 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
235 | 43 | rexrd 10540 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
236 | 235 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
237 | 95 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
238 | | elioore 12618 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) → 𝑡 ∈ ℝ) |
239 | 238 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑡 ∈ ℝ) |
240 | 237, 239 | readdcld 10519 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) ∈ ℝ) |
241 | 169 | oveq2d 7035 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝐻‘𝑖)) = (𝑋 + ((𝑄‘𝑖) − 𝑋))) |
242 | 202 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ) |
243 | 40 | recnd 10518 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℂ) |
244 | 242, 243 | pncan3d 10850 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + ((𝑄‘𝑖) − 𝑋)) = (𝑄‘𝑖)) |
245 | | eqidd 2795 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = (𝑄‘𝑖)) |
246 | 241, 244,
245 | 3eqtrrd 2835 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = (𝑋 + (𝐻‘𝑖))) |
247 | 246 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑄‘𝑖) = (𝑋 + (𝐻‘𝑖))) |
248 | 230 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻‘𝑖) ∈ ℝ) |
249 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) |
250 | 248 | rexrd 10540 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻‘𝑖) ∈
ℝ*) |
251 | 231 | rexrd 10540 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) ∈
ℝ*) |
252 | 251 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻‘(𝑖 + 1)) ∈
ℝ*) |
253 | | elioo2 12629 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐻‘𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ*) →
(𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↔ (𝑡 ∈ ℝ ∧ (𝐻‘𝑖) < 𝑡 ∧ 𝑡 < (𝐻‘(𝑖 + 1))))) |
254 | 250, 252,
253 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↔ (𝑡 ∈ ℝ ∧ (𝐻‘𝑖) < 𝑡 ∧ 𝑡 < (𝐻‘(𝑖 + 1))))) |
255 | 249, 254 | mpbid 233 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑡 ∈ ℝ ∧ (𝐻‘𝑖) < 𝑡 ∧ 𝑡 < (𝐻‘(𝑖 + 1)))) |
256 | 255 | simp2d 1136 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻‘𝑖) < 𝑡) |
257 | 248, 239,
237, 256 | ltadd2dd 10648 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + (𝐻‘𝑖)) < (𝑋 + 𝑡)) |
258 | 247, 257 | eqbrtrd 4986 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑋 + 𝑡)) |
259 | 231 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻‘(𝑖 + 1)) ∈ ℝ) |
260 | 255 | simp3d 1137 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑡 < (𝐻‘(𝑖 + 1))) |
261 | 239, 259,
237, 260 | ltadd2dd 10648 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) < (𝑋 + (𝐻‘(𝑖 + 1)))) |
262 | 179 | oveq2d 7035 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝐻‘(𝑖 + 1))) = (𝑋 + ((𝑄‘(𝑖 + 1)) − 𝑋))) |
263 | 43 | recnd 10518 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ) |
264 | 242, 263 | pncan3d 10850 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + ((𝑄‘(𝑖 + 1)) − 𝑋)) = (𝑄‘(𝑖 + 1))) |
265 | 262, 264 | eqtrd 2830 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝐻‘(𝑖 + 1))) = (𝑄‘(𝑖 + 1))) |
266 | 265 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + (𝐻‘(𝑖 + 1))) = (𝑄‘(𝑖 + 1))) |
267 | 261, 266 | breqtrd 4990 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) < (𝑄‘(𝑖 + 1))) |
268 | 234, 236,
240, 258, 267 | eliood 41328 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
269 | | eqid 2794 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) = (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) |
270 | 268, 269 | fmptd 6744 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)):((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))⟶((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
271 | | fcompt 6761 |
. . . . . . . . . . 11
⊢ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ∧ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)):((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))⟶((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) = (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)))) |
272 | 232, 270,
271 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) = (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)))) |
273 | | oveq2 7027 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑟 → (𝑋 + 𝑡) = (𝑋 + 𝑟)) |
274 | 273 | cbvmptv 5064 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) = (𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟)) |
275 | 274 | fveq1i 6542 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠) = ((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠) |
276 | 275 | fveq2i 6544 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠)) |
277 | 276 | mpteq2i 5055 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠))) |
278 | 277 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠)))) |
279 | | fveq2 6541 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑡 → ((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠) = ((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡)) |
280 | 279 | fveq2d 6545 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡))) |
281 | 280 | cbvmptv 5064 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠))) = (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡))) |
282 | 281 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠))) = (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡)))) |
283 | | eqidd 2795 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟)) = (𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))) |
284 | | oveq2 7027 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑡 → (𝑋 + 𝑟) = (𝑋 + 𝑡)) |
285 | 284 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) ∧ 𝑟 = 𝑡) → (𝑋 + 𝑟) = (𝑋 + 𝑡)) |
286 | 283, 285,
249, 240 | fvmptd 6644 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → ((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡) = (𝑋 + 𝑡)) |
287 | 286 | fveq2d 6545 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡))) |
288 | | fvres 6560 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 + 𝑡) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡))) |
289 | 268, 288 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡))) |
290 | 287, 289 | eqtrd 2830 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡)) = (𝐹‘(𝑋 + 𝑡))) |
291 | 290 | mpteq2dva 5058 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡))) = (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡)))) |
292 | 278, 282,
291 | 3eqtrd 2834 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡)))) |
293 | 272, 292 | eqtr2d 2831 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)))) |
294 | | eqid 2794 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ℂ ↦ (𝑋 + 𝑡)) = (𝑡 ∈ ℂ ↦ (𝑋 + 𝑡)) |
295 | | ssid 3912 |
. . . . . . . . . . . . . . 15
⊢ ℂ
⊆ ℂ |
296 | 295 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → ℂ
⊆ ℂ) |
297 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → 𝑋 ∈
ℂ) |
298 | 296, 297,
296 | constcncfg 41709 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑋) ∈ (ℂ–cn→ℂ)) |
299 | | cncfmptid 23203 |
. . . . . . . . . . . . . . 15
⊢ ((ℂ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)) |
300 | 295, 295,
299 | mp2an 688 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ) |
301 | 300 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)) |
302 | 298, 301 | addcncf 41711 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ (𝑋 + 𝑡)) ∈ (ℂ–cn→ℂ)) |
303 | 242, 302 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ℂ ↦ (𝑋 + 𝑡)) ∈ (ℂ–cn→ℂ)) |
304 | | ioosscn 41324 |
. . . . . . . . . . . 12
⊢ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ⊆ ℂ |
305 | 304 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ⊆ ℂ) |
306 | | ioosscn 41324 |
. . . . . . . . . . . 12
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ |
307 | 306 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ) |
308 | 294, 303,
305, 307, 268 | cncfmptssg 41708 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))–cn→((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
309 | 308, 64 | cncfco 23198 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))–cn→ℂ)) |
310 | 293, 309 | eqeltrd 2882 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))–cn→ℂ)) |
311 | 233 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑄‘𝑖) ∈
ℝ*) |
312 | 235 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
313 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) |
314 | | vex 3439 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑟 ∈ V |
315 | 269 | elrnmpt 5713 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ∈ V → (𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ↔ ∃𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡))) |
316 | 314, 315 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ↔ ∃𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡)) |
317 | 313, 316 | sylib 219 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ∃𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡)) |
318 | | nfv 1893 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡(𝜑 ∧ 𝑖 ∈ (0..^𝑀)) |
319 | | nfmpt1 5061 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑡(𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) |
320 | 319 | nfrn 5709 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑡ran
(𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) |
321 | 320 | nfcri 2942 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑡 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) |
322 | 318, 321 | nfan 1882 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) |
323 | | nfv 1893 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡 𝑟 ∈ ℝ |
324 | | simp3 1131 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑟 = (𝑋 + 𝑡)) |
325 | 95 | 3ad2ant1 1126 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑋 ∈ ℝ) |
326 | 238 | 3ad2ant2 1127 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑡 ∈ ℝ) |
327 | 325, 326 | readdcld 10519 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → (𝑋 + 𝑡) ∈ ℝ) |
328 | 324, 327 | eqeltrd 2882 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑟 ∈ ℝ) |
329 | 328 | 3exp 1112 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → 𝑟 ∈ ℝ))) |
330 | 329 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → 𝑟 ∈ ℝ))) |
331 | 322, 323,
330 | rexlimd 3277 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (∃𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡) → 𝑟 ∈ ℝ)) |
332 | 317, 331 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ ℝ) |
333 | | nfv 1893 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡(𝑄‘𝑖) < 𝑟 |
334 | 258 | 3adant3 1125 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → (𝑄‘𝑖) < (𝑋 + 𝑡)) |
335 | | simp3 1131 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑟 = (𝑋 + 𝑡)) |
336 | 334, 335 | breqtrrd 4992 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → (𝑄‘𝑖) < 𝑟) |
337 | 336 | 3exp 1112 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → (𝑄‘𝑖) < 𝑟))) |
338 | 337 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → (𝑄‘𝑖) < 𝑟))) |
339 | 322, 333,
338 | rexlimd 3277 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (∃𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡) → (𝑄‘𝑖) < 𝑟)) |
340 | 317, 339 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑄‘𝑖) < 𝑟) |
341 | | nfv 1893 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑡 𝑟 < (𝑄‘(𝑖 + 1)) |
342 | 267 | 3adant3 1125 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → (𝑋 + 𝑡) < (𝑄‘(𝑖 + 1))) |
343 | 335, 342 | eqbrtrd 4986 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑟 < (𝑄‘(𝑖 + 1))) |
344 | 343 | 3exp 1112 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → 𝑟 < (𝑄‘(𝑖 + 1))))) |
345 | 344 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → 𝑟 < (𝑄‘(𝑖 + 1))))) |
346 | 322, 341,
345 | rexlimd 3277 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (∃𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡) → 𝑟 < (𝑄‘(𝑖 + 1)))) |
347 | 317, 346 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 < (𝑄‘(𝑖 + 1))) |
348 | 311, 312,
332, 340, 347 | eliood 41328 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
349 | 223 | ineq2d 4111 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ dom 𝐹) = (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∩
(-π[,]π))) |
350 | 349 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ dom 𝐹) = (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∩
(-π[,]π))) |
351 | | dmres 5759 |
. . . . . . . . . . . . . . . . 17
⊢ dom
(𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ dom 𝐹) |
352 | 351 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ dom 𝐹)) |
353 | | dfss 3877 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π) ↔ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∩
(-π[,]π))) |
354 | 60, 353 | sylib 219 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∩
(-π[,]π))) |
355 | 350, 352,
354 | 3eqtr4d 2840 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
356 | 355 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
357 | 348, 356 | eleqtrrd 2885 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
358 | 332, 347 | ltned 10625 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ≠ (𝑄‘(𝑖 + 1))) |
359 | 358 | neneqd 2988 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ¬ 𝑟 = (𝑄‘(𝑖 + 1))) |
360 | | velsn 4490 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ {(𝑄‘(𝑖 + 1))} ↔ 𝑟 = (𝑄‘(𝑖 + 1))) |
361 | 359, 360 | sylnibr 330 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ¬ 𝑟 ∈ {(𝑄‘(𝑖 + 1))}) |
362 | 357, 361 | eldifd 3872 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))})) |
363 | 362 | ralrimiva 3148 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))𝑟 ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))})) |
364 | | dfss3 3880 |
. . . . . . . . . . 11
⊢ (ran
(𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ⊆ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))}) ↔ ∀𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))𝑟 ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))})) |
365 | 363, 364 | sylibr 235 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ⊆ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))})) |
366 | | eqid 2794 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) |
367 | 202 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → 𝑋 ∈ ℂ) |
368 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → 𝑠 ∈ ℂ) |
369 | 367, 368 | addcomd 10691 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → (𝑋 + 𝑠) = (𝑠 + 𝑋)) |
370 | 369 | mpteq2dva 5058 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋))) |
371 | | eqid 2794 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) |
372 | 371 | addccncf 23207 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ)) |
373 | 202, 372 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ)) |
374 | 370, 373 | eqeltrd 2882 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) ∈ (ℂ–cn→ℂ)) |
375 | 374 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) ∈ (ℂ–cn→ℂ)) |
376 | 230 | rexrd 10540 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘𝑖) ∈
ℝ*) |
377 | | iocssre 12666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐻‘𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ) → ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℝ) |
378 | 376, 231,
377 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℝ) |
379 | | ax-resscn 10443 |
. . . . . . . . . . . . . . . . . 18
⊢ ℝ
⊆ ℂ |
380 | 378, 379 | syl6ss 3903 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℂ) |
381 | 295 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ℂ ⊆
ℂ) |
382 | 202 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) → 𝑋 ∈ ℂ) |
383 | 380 | sselda 3891 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) → 𝑠 ∈ ℂ) |
384 | 382, 383 | addcld 10509 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℂ) |
385 | 366, 375,
380, 381, 384 | cncfmptssg 41708 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))–cn→ℂ)) |
386 | | eqid 2794 |
. . . . . . . . . . . . . . . . . 18
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
387 | | eqid 2794 |
. . . . . . . . . . . . . . . . . 18
⊢
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) =
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) |
388 | 386 | cnfldtop 23075 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(TopOpen‘ℂfld) ∈ Top |
389 | | unicntop 23077 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
390 | 389 | restid 16536 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((TopOpen‘ℂfld) ∈ Top →
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
391 | 388, 390 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
392 | 391 | eqcomi 2803 |
. . . . . . . . . . . . . . . . . 18
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
393 | 386, 387,
392 | cncfcn 23200 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℂ ∧ ℂ ⊆
ℂ) → (((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld))) |
394 | 380, 381,
393 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld))) |
395 | 385, 394 | eleqtrd 2884 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld))) |
396 | 386 | cnfldtopon 23074 |
. . . . . . . . . . . . . . . . . 18
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
397 | 396 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
398 | | resttopon 21453 |
. . . . . . . . . . . . . . . . 17
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))))) |
399 | 397, 380,
398 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))))) |
400 | | cncnp 21572 |
. . . . . . . . . . . . . . . 16
⊢
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) ∧
(TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) →
((𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡)))) |
401 | 399, 397,
400 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡)))) |
402 | 395, 401 | mpbid 233 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡))) |
403 | 402 | simprd 496 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑡 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡)) |
404 | | ubioc1 12640 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐻‘𝑖) < (𝐻‘(𝑖 + 1))) → (𝐻‘(𝑖 + 1)) ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) |
405 | 376, 251,
180, 404 | syl3anc 1364 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) |
406 | | fveq2 6541 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = (𝐻‘(𝑖 + 1)) →
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡) = ((((TopOpen‘ℂfld)
↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1)))) |
407 | 406 | eleq2d 2867 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = (𝐻‘(𝑖 + 1)) → ((𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡) ↔ (𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))))) |
408 | 407 | rspccva 3556 |
. . . . . . . . . . . . 13
⊢
((∀𝑡 ∈
((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡) ∧ (𝐻‘(𝑖 + 1)) ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) → (𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1)))) |
409 | 403, 405,
408 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1)))) |
410 | | ioounsn 12713 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐻‘𝑖) < (𝐻‘(𝑖 + 1))) → (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) = ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) |
411 | 376, 251,
180, 410 | syl3anc 1364 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) = ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) |
412 | 265 | eqcomd 2800 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = (𝑋 + (𝐻‘(𝑖 + 1)))) |
413 | 412 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ 𝑠 = (𝐻‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) = (𝑋 + (𝐻‘(𝑖 + 1)))) |
414 | | iftrue 4389 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝐻‘(𝑖 + 1)) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑄‘(𝑖 + 1))) |
415 | 414 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ 𝑠 = (𝐻‘(𝑖 + 1))) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑄‘(𝑖 + 1))) |
416 | | oveq2 7027 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝐻‘(𝑖 + 1)) → (𝑋 + 𝑠) = (𝑋 + (𝐻‘(𝑖 + 1)))) |
417 | 416 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ 𝑠 = (𝐻‘(𝑖 + 1))) → (𝑋 + 𝑠) = (𝑋 + (𝐻‘(𝑖 + 1)))) |
418 | 413, 415,
417 | 3eqtr4d 2840 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ 𝑠 = (𝐻‘(𝑖 + 1))) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠)) |
419 | | iffalse 4392 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑠 = (𝐻‘(𝑖 + 1)) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) |
420 | 419 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) |
421 | | eqidd 2795 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) = (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) |
422 | | oveq2 7027 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑠 → (𝑋 + 𝑡) = (𝑋 + 𝑠)) |
423 | 422 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) ∧ 𝑡 = 𝑠) → (𝑋 + 𝑡) = (𝑋 + 𝑠)) |
424 | | velsn 4490 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ {(𝐻‘(𝑖 + 1))} ↔ 𝑠 = (𝐻‘(𝑖 + 1))) |
425 | 424 | notbii 321 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑠 ∈ {(𝐻‘(𝑖 + 1))} ↔ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) |
426 | | elun 4048 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↔ (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘(𝑖 + 1))})) |
427 | 426 | biimpi 217 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) → (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘(𝑖 + 1))})) |
428 | 427 | orcomd 866 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) → (𝑠 ∈ {(𝐻‘(𝑖 + 1))} ∨ 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))))) |
429 | 428 | ord 859 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) → (¬ 𝑠 ∈ {(𝐻‘(𝑖 + 1))} → 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))))) |
430 | 425, 429 | syl5bir 244 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) → (¬ 𝑠 = (𝐻‘(𝑖 + 1)) → 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))))) |
431 | 430 | imp 407 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) |
432 | 431 | adantll 710 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) |
433 | 95 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) → 𝑋 ∈ ℝ) |
434 | | elioore 12618 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) → 𝑠 ∈ ℝ) |
435 | 434 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑠 ∈ ℝ) |
436 | | elsni 4491 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 ∈ {(𝐻‘(𝑖 + 1))} → 𝑠 = (𝐻‘(𝑖 + 1))) |
437 | 436 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘(𝑖 + 1))}) → 𝑠 = (𝐻‘(𝑖 + 1))) |
438 | 231 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘(𝑖 + 1))}) → (𝐻‘(𝑖 + 1)) ∈ ℝ) |
439 | 437, 438 | eqeltrd 2882 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘(𝑖 + 1))}) → 𝑠 ∈ ℝ) |
440 | 435, 439 | jaodan 952 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘(𝑖 + 1))})) → 𝑠 ∈ ℝ) |
441 | 426, 440 | sylan2b 593 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) → 𝑠 ∈ ℝ) |
442 | 433, 441 | readdcld 10519 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) → (𝑋 + 𝑠) ∈ ℝ) |
443 | 442 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → (𝑋 + 𝑠) ∈ ℝ) |
444 | 421, 423,
432, 443 | fvmptd 6644 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠) = (𝑋 + 𝑠)) |
445 | 420, 444 | eqtrd 2830 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠)) |
446 | 418, 445 | pm2.61dan 809 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠)) |
447 | 411, 446 | mpteq12dva 5047 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠))) |
448 | 411 | oveq2d 7035 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) =
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1))))) |
449 | 448 | oveq1d 7034 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
(((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld)) =
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))) |
450 | 449 | fveq1d 6543 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
((((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))) =
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)(,](𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1)))) |
451 | 409, 447,
450 | 3eltr4d 2897 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) ∈
((((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1)))) |
452 | | eqid 2794 |
. . . . . . . . . . . 12
⊢
((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) =
((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) |
453 | | eqid 2794 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) |
454 | 270, 307 | fssd 6399 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)):((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))⟶ℂ) |
455 | 231 | recnd 10518 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) ∈ ℂ) |
456 | 452, 386,
453, 454, 305, 455 | ellimc 24154 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) ∈ ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) limℂ (𝐻‘(𝑖 + 1))) ↔ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) ∈
((((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) CnP
(TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))))) |
457 | 451, 456 | mpbird 258 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) limℂ (𝐻‘(𝑖 + 1)))) |
458 | 365, 457,
66 | limccog 41456 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) limℂ (𝐻‘(𝑖 + 1)))) |
459 | 272, 292 | eqtrd 2830 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) = (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡)))) |
460 | 459 | oveq1d 7034 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) limℂ (𝐻‘(𝑖 + 1))) = ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) limℂ (𝐻‘(𝑖 + 1)))) |
461 | 458, 460 | eleqtrd 2884 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) limℂ (𝐻‘(𝑖 + 1)))) |
462 | 40 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑄‘𝑖) ∈ ℝ) |
463 | 462, 340 | gtned 10624 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ≠ (𝑄‘𝑖)) |
464 | 463 | neneqd 2988 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ¬ 𝑟 = (𝑄‘𝑖)) |
465 | | velsn 4490 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ {(𝑄‘𝑖)} ↔ 𝑟 = (𝑄‘𝑖)) |
466 | 464, 465 | sylnibr 330 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ¬ 𝑟 ∈ {(𝑄‘𝑖)}) |
467 | 357, 466 | eldifd 3872 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)})) |
468 | 467 | ralrimiva 3148 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))𝑟 ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)})) |
469 | | dfss3 3880 |
. . . . . . . . . . 11
⊢ (ran
(𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ⊆ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)}) ↔ ∀𝑟 ∈ ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))𝑟 ∈ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)})) |
470 | 468, 469 | sylibr 235 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ran (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ⊆ (dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘𝑖)})) |
471 | | icossre 12667 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐻‘𝑖) ∈ ℝ ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ*) →
((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℝ) |
472 | 230, 251,
471 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℝ) |
473 | 472, 379 | syl6ss 3903 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℂ) |
474 | 202 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) → 𝑋 ∈ ℂ) |
475 | 473 | sselda 3891 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) → 𝑠 ∈ ℂ) |
476 | 474, 475 | addcld 10509 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℂ) |
477 | 366, 375,
473, 381, 476 | cncfmptssg 41708 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))–cn→ℂ)) |
478 | | eqid 2794 |
. . . . . . . . . . . . . . . . . 18
⊢
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) =
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) |
479 | 386, 478,
392 | cncfcn 23200 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℂ ∧ ℂ ⊆
ℂ) → (((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld))) |
480 | 473, 381,
479 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld))) |
481 | 477, 480 | eleqtrd 2884 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld))) |
482 | | resttopon 21453 |
. . . . . . . . . . . . . . . . 17
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))))) |
483 | 397, 473,
482 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))))) |
484 | | cncnp 21572 |
. . . . . . . . . . . . . . . 16
⊢
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) ∧
(TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) →
((𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡)))) |
485 | 483, 397,
484 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn
(TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡)))) |
486 | 481, 485 | mpbid 233 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡))) |
487 | 486 | simprd 496 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∀𝑡 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡)) |
488 | | lbico1 12641 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐻‘𝑖) < (𝐻‘(𝑖 + 1))) → (𝐻‘𝑖) ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) |
489 | 376, 251,
180, 488 | syl3anc 1364 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘𝑖) ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) |
490 | | fveq2 6541 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = (𝐻‘𝑖) →
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡) = ((((TopOpen‘ℂfld)
↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘𝑖))) |
491 | 490 | eleq2d 2867 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = (𝐻‘𝑖) → ((𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡) ↔ (𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘𝑖)))) |
492 | 491 | rspccva 3556 |
. . . . . . . . . . . . 13
⊢
((∀𝑡 ∈
((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘𝑡) ∧ (𝐻‘𝑖) ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) → (𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘𝑖))) |
493 | 487, 489,
492 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈
((((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘𝑖))) |
494 | | uncom 4052 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) = ({(𝐻‘𝑖)} ∪ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) |
495 | | snunioo 12714 |
. . . . . . . . . . . . . . 15
⊢ (((𝐻‘𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐻‘𝑖) < (𝐻‘(𝑖 + 1))) → ({(𝐻‘𝑖)} ∪ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) = ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) |
496 | 376, 251,
180, 495 | syl3anc 1364 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ({(𝐻‘𝑖)} ∪ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) = ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) |
497 | 494, 496 | syl5eq 2842 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) = ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) |
498 | | iftrue 4389 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝐻‘𝑖) → if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑄‘𝑖)) |
499 | 498 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = (𝐻‘𝑖)) → if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑄‘𝑖)) |
500 | 246 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = (𝐻‘𝑖)) → (𝑄‘𝑖) = (𝑋 + (𝐻‘𝑖))) |
501 | | oveq2 7027 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = (𝐻‘𝑖) → (𝑋 + 𝑠) = (𝑋 + (𝐻‘𝑖))) |
502 | 501 | eqcomd 2800 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝐻‘𝑖) → (𝑋 + (𝐻‘𝑖)) = (𝑋 + 𝑠)) |
503 | 502 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = (𝐻‘𝑖)) → (𝑋 + (𝐻‘𝑖)) = (𝑋 + 𝑠)) |
504 | 499, 500,
503 | 3eqtrd 2834 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = (𝐻‘𝑖)) → if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠)) |
505 | 504 | adantlr 711 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) ∧ 𝑠 = (𝐻‘𝑖)) → if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠)) |
506 | | iffalse 4392 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑠 = (𝐻‘𝑖) → if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) |
507 | 506 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) ∧ ¬ 𝑠 = (𝐻‘𝑖)) → if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) |
508 | | eqidd 2795 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) ∧ ¬ 𝑠 = (𝐻‘𝑖)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) = (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) |
509 | 422 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) ∧ ¬ 𝑠 = (𝐻‘𝑖)) ∧ 𝑡 = 𝑠) → (𝑋 + 𝑡) = (𝑋 + 𝑠)) |
510 | | velsn 4490 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ {(𝐻‘𝑖)} ↔ 𝑠 = (𝐻‘𝑖)) |
511 | 510 | notbii 321 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑠 ∈ {(𝐻‘𝑖)} ↔ ¬ 𝑠 = (𝐻‘𝑖)) |
512 | | elun 4048 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) ↔ (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘𝑖)})) |
513 | 512 | biimpi 217 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) → (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘𝑖)})) |
514 | 513 | orcomd 866 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) → (𝑠 ∈ {(𝐻‘𝑖)} ∨ 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))))) |
515 | 514 | ord 859 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) → (¬ 𝑠 ∈ {(𝐻‘𝑖)} → 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))))) |
516 | 511, 515 | syl5bir 244 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) → (¬ 𝑠 = (𝐻‘𝑖) → 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))))) |
517 | 516 | imp 407 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) ∧ ¬ 𝑠 = (𝐻‘𝑖)) → 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) |
518 | 517 | adantll 710 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) ∧ ¬ 𝑠 = (𝐻‘𝑖)) → 𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1)))) |
519 | 95 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) → 𝑋 ∈ ℝ) |
520 | | elsni 4491 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 ∈ {(𝐻‘𝑖)} → 𝑠 = (𝐻‘𝑖)) |
521 | 520 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘𝑖)}) → 𝑠 = (𝐻‘𝑖)) |
522 | 230 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘𝑖)}) → (𝐻‘𝑖) ∈ ℝ) |
523 | 521, 522 | eqeltrd 2882 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘𝑖)}) → 𝑠 ∈ ℝ) |
524 | 435, 523 | jaodan 952 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑠 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘𝑖)})) → 𝑠 ∈ ℝ) |
525 | 512, 524 | sylan2b 593 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) → 𝑠 ∈ ℝ) |
526 | 519, 525 | readdcld 10519 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) → (𝑋 + 𝑠) ∈ ℝ) |
527 | 526 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) ∧ ¬ 𝑠 = (𝐻‘𝑖)) → (𝑋 + 𝑠) ∈ ℝ) |
528 | 508, 509,
518, 527 | fvmptd 6644 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) ∧ ¬ 𝑠 = (𝐻‘𝑖)) → ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠) = (𝑋 + 𝑠)) |
529 | 507, 528 | eqtrd 2830 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) ∧ ¬ 𝑠 = (𝐻‘𝑖)) → if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠)) |
530 | 505, 529 | pm2.61dan 809 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) → if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠)) |
531 | 497, 530 | mpteq12dva 5047 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) ↦ if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠))) |
532 | 497 | oveq2d 7035 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) = ((TopOpen‘ℂfld)
↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1))))) |
533 | 532 | oveq1d 7034 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
(((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) CnP
(TopOpen‘ℂfld)) =
(((TopOpen‘ℂfld) ↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))) |
534 | 533 | fveq1d 6543 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) →
((((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝐻‘𝑖)) = ((((TopOpen‘ℂfld)
↾t ((𝐻‘𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP
(TopOpen‘ℂfld))‘(𝐻‘𝑖))) |
535 | 493, 531,
534 | 3eltr4d 2897 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) ↦ if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) ∈
((((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝐻‘𝑖))) |
536 | | eqid 2794 |
. . . . . . . . . . . 12
⊢
((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) = ((TopOpen‘ℂfld)
↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) |
537 | | eqid 2794 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) ↦ if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) ↦ if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) |
538 | 230 | recnd 10518 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻‘𝑖) ∈ ℂ) |
539 | 536, 386,
537, 454, 305, 538 | ellimc 24154 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) ∈ ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) limℂ (𝐻‘𝑖)) ↔ (𝑠 ∈ (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)}) ↦ if(𝑠 = (𝐻‘𝑖), (𝑄‘𝑖), ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) ∈
((((TopOpen‘ℂfld) ↾t (((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘𝑖)})) CnP
(TopOpen‘ℂfld))‘(𝐻‘𝑖)))) |
540 | 535, 539 | mpbird 258 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) limℂ (𝐻‘𝑖))) |
541 | 470, 540,
69 | limccog 41456 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) limℂ (𝐻‘𝑖))) |
542 | 459 | oveq1d 7034 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) limℂ (𝐻‘𝑖)) = ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) limℂ (𝐻‘𝑖))) |
543 | 541, 542 | eleqtrd 2884 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) limℂ (𝐻‘𝑖))) |
544 | 230, 231,
310, 461, 543 | iblcncfioo 41818 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) ∈
𝐿1) |
545 | 30 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝐹:(-π[,]π)⟶ℂ) |
546 | 49 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → -π ∈
ℝ*) |
547 | 51 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → π ∈
ℝ*) |
548 | 21 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
549 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀)) |
550 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) |
551 | 169, 179 | oveq12d 7037 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1))) = (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) |
552 | 551 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1))) = (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) |
553 | 550, 552 | eleqtrd 2884 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝑡 ∈ (((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) |
554 | 553, 116 | syldan 591 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
555 | 546, 547,
548, 549, 554 | fourierdlem1 41949 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) ∈ (-π[,]π)) |
556 | 545, 555 | ffvelrnd 6720 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑡)) ∈ ℂ) |
557 | 230, 231,
544, 556 | ibliooicc 41811 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) ∈
𝐿1) |
558 | 14, 20, 165, 180, 229, 557 | itgspltprt 41819 |
. . . . 5
⊢ (𝜑 → ∫((𝐻‘0)[,](𝐻‘𝑀))(𝐹‘(𝑋 + 𝑡)) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
559 | 551 | itgeq1d 41797 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))(𝐹‘(𝑋 + 𝑡)) d𝑡 = ∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
560 | 559 | sumeq2dv 14893 |
. . . . 5
⊢ (𝜑 → Σ𝑖 ∈ (0..^𝑀)∫((𝐻‘𝑖)[,](𝐻‘(𝑖 + 1)))(𝐹‘(𝑋 + 𝑡)) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
561 | 558, 560 | eqtrd 2830 |
. . . 4
⊢ (𝜑 → ∫((𝐻‘0)[,](𝐻‘𝑀))(𝐹‘(𝑋 + 𝑡)) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
562 | 125, 161,
561 | 3eqtrd 2834 |
. . 3
⊢ (𝜑 → ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠 = Σ𝑖 ∈ (0..^𝑀)∫(((𝑄‘𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) |
563 | 121, 562 | eqtr4d 2833 |
. 2
⊢ (𝜑 → Σ𝑖 ∈ (0..^𝑀)∫((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹‘𝑡) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠) |
564 | 13, 76, 563 | 3eqtrd 2834 |
1
⊢ (𝜑 → ∫(-π[,]π)(𝐹‘𝑡) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠) |