| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restcldi | Structured version Visualization version GIF version | ||
| Description: A closed set is closed in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| restcldi.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| restcldi | ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . 3 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (Clsd‘𝐽)) | |
| 2 | dfss 3916 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 ↔ 𝐵 = (𝐵 ∩ 𝐴)) | |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = (𝐵 ∩ 𝐴)) |
| 4 | 3 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 = (𝐵 ∩ 𝐴)) |
| 5 | ineq1 4160 | . . . 4 ⊢ (𝑣 = 𝐵 → (𝑣 ∩ 𝐴) = (𝐵 ∩ 𝐴)) | |
| 6 | 5 | rspceeqv 3595 | . . 3 ⊢ ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 = (𝐵 ∩ 𝐴)) → ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴)) |
| 7 | 1, 4, 6 | syl2anc 584 | . 2 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴)) |
| 8 | cldrcl 22941 | . . . 4 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 9 | 8 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐽 ∈ Top) |
| 10 | simp1 1136 | . . 3 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐴 ⊆ 𝑋) | |
| 11 | restcldi.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 12 | 11 | restcld 23087 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴))) |
| 13 | 9, 10, 12 | syl2anc 584 | . 2 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴))) |
| 14 | 7, 13 | mpbird 257 | 1 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∩ cin 3896 ⊆ wss 3897 ∪ cuni 4856 ‘cfv 6481 (class class class)co 7346 ↾t crest 17324 Topctop 22808 Clsdccld 22931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-en 8870 df-fin 8873 df-fi 9295 df-rest 17326 df-topgen 17347 df-top 22809 df-topon 22826 df-bases 22861 df-cld 22934 |
| This theorem is referenced by: txkgen 23567 qtoprest 23632 cnmpopc 24849 cnheiborlem 24880 abelth 26378 zarmxt1 33893 cvmliftlem10 35338 icccldii 49029 |
| Copyright terms: Public domain | W3C validator |