MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcldi Structured version   Visualization version   GIF version

Theorem restcldi 23181
Description: A closed set is closed in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
restcldi.1 𝑋 = 𝐽
Assertion
Ref Expression
restcldi ((𝐴𝑋𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴) → 𝐵 ∈ (Clsd‘(𝐽t 𝐴)))

Proof of Theorem restcldi
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp2 1138 . . 3 ((𝐴𝑋𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴) → 𝐵 ∈ (Clsd‘𝐽))
2 dfss 3970 . . . . 5 (𝐵𝐴𝐵 = (𝐵𝐴))
32biimpi 216 . . . 4 (𝐵𝐴𝐵 = (𝐵𝐴))
433ad2ant3 1136 . . 3 ((𝐴𝑋𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴) → 𝐵 = (𝐵𝐴))
5 ineq1 4213 . . . 4 (𝑣 = 𝐵 → (𝑣𝐴) = (𝐵𝐴))
65rspceeqv 3645 . . 3 ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 = (𝐵𝐴)) → ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣𝐴))
71, 4, 6syl2anc 584 . 2 ((𝐴𝑋𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴) → ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣𝐴))
8 cldrcl 23034 . . . 4 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
983ad2ant2 1135 . . 3 ((𝐴𝑋𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴) → 𝐽 ∈ Top)
10 simp1 1137 . . 3 ((𝐴𝑋𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴) → 𝐴𝑋)
11 restcldi.1 . . . 4 𝑋 = 𝐽
1211restcld 23180 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐵 ∈ (Clsd‘(𝐽t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣𝐴)))
139, 10, 12syl2anc 584 . 2 ((𝐴𝑋𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴) → (𝐵 ∈ (Clsd‘(𝐽t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣𝐴)))
147, 13mpbird 257 1 ((𝐴𝑋𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴) → 𝐵 ∈ (Clsd‘(𝐽t 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  cin 3950  wss 3951   cuni 4907  cfv 6561  (class class class)co 7431  t crest 17465  Topctop 22899  Clsdccld 23024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-en 8986  df-fin 8989  df-fi 9451  df-rest 17467  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953  df-cld 23027
This theorem is referenced by:  txkgen  23660  qtoprest  23725  cnmpopc  24955  cnheiborlem  24986  abelth  26485  zarmxt1  33879  cvmliftlem10  35299  icccldii  48816
  Copyright terms: Public domain W3C validator