| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restcldi | Structured version Visualization version GIF version | ||
| Description: A closed set is closed in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| restcldi.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| restcldi | ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . 3 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (Clsd‘𝐽)) | |
| 2 | dfss 3930 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 ↔ 𝐵 = (𝐵 ∩ 𝐴)) | |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = (𝐵 ∩ 𝐴)) |
| 4 | 3 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 = (𝐵 ∩ 𝐴)) |
| 5 | ineq1 4172 | . . . 4 ⊢ (𝑣 = 𝐵 → (𝑣 ∩ 𝐴) = (𝐵 ∩ 𝐴)) | |
| 6 | 5 | rspceeqv 3608 | . . 3 ⊢ ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 = (𝐵 ∩ 𝐴)) → ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴)) |
| 7 | 1, 4, 6 | syl2anc 584 | . 2 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴)) |
| 8 | cldrcl 22946 | . . . 4 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 9 | 8 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐽 ∈ Top) |
| 10 | simp1 1136 | . . 3 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐴 ⊆ 𝑋) | |
| 11 | restcldi.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 12 | 11 | restcld 23092 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴))) |
| 13 | 9, 10, 12 | syl2anc 584 | . 2 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑣 ∈ (Clsd‘𝐽)𝐵 = (𝑣 ∩ 𝐴))) |
| 14 | 7, 13 | mpbird 257 | 1 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3910 ⊆ wss 3911 ∪ cuni 4867 ‘cfv 6499 (class class class)co 7369 ↾t crest 17359 Topctop 22813 Clsdccld 22936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-en 8896 df-fin 8899 df-fi 9338 df-rest 17361 df-topgen 17382 df-top 22814 df-topon 22831 df-bases 22866 df-cld 22939 |
| This theorem is referenced by: txkgen 23572 qtoprest 23637 cnmpopc 24855 cnheiborlem 24886 abelth 26384 zarmxt1 33863 cvmliftlem10 35274 icccldii 48900 |
| Copyright terms: Public domain | W3C validator |