| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmulpi | Structured version Visualization version GIF version | ||
| Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dmmulpi | ⊢ dom ·N = (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 5999 | . . 3 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o ) | |
| 2 | fnom 8519 | . . . . 5 ⊢ ·o Fn (On × On) | |
| 3 | 2 | fndmi 6641 | . . . 4 ⊢ dom ·o = (On × On) |
| 4 | 3 | ineq2i 4192 | . . 3 ⊢ ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On)) |
| 5 | 1, 4 | eqtri 2758 | . 2 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
| 6 | df-mi 10886 | . . 3 ⊢ ·N = ( ·o ↾ (N × N)) | |
| 7 | 6 | dmeqi 5884 | . 2 ⊢ dom ·N = dom ( ·o ↾ (N × N)) |
| 8 | df-ni 10884 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
| 9 | difss 4111 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 10 | 8, 9 | eqsstri 4005 | . . . . . 6 ⊢ N ⊆ ω |
| 11 | omsson 7863 | . . . . . 6 ⊢ ω ⊆ On | |
| 12 | 10, 11 | sstri 3968 | . . . . 5 ⊢ N ⊆ On |
| 13 | anidm 564 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
| 14 | 12, 13 | mpbir 231 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
| 15 | xpss12 5669 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
| 17 | dfss 3945 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
| 18 | 16, 17 | mpbi 230 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
| 19 | 5, 7, 18 | 3eqtr4i 2768 | 1 ⊢ dom ·N = (N × N) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 {csn 4601 × cxp 5652 dom cdm 5654 ↾ cres 5656 Oncon0 6352 ωcom 7859 ·o comu 8476 Ncnpi 10856 ·N cmi 10858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-omul 8483 df-ni 10884 df-mi 10886 |
| This theorem is referenced by: mulcompi 10908 mulasspi 10909 distrpi 10910 mulcanpi 10912 ltmpi 10916 ordpipq 10954 |
| Copyright terms: Public domain | W3C validator |