| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmulpi | Structured version Visualization version GIF version | ||
| Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dmmulpi | ⊢ dom ·N = (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 5956 | . . 3 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o ) | |
| 2 | fnom 8419 | . . . . 5 ⊢ ·o Fn (On × On) | |
| 3 | 2 | fndmi 6580 | . . . 4 ⊢ dom ·o = (On × On) |
| 4 | 3 | ineq2i 4162 | . . 3 ⊢ ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On)) |
| 5 | 1, 4 | eqtri 2754 | . 2 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
| 6 | df-mi 10760 | . . 3 ⊢ ·N = ( ·o ↾ (N × N)) | |
| 7 | 6 | dmeqi 5839 | . 2 ⊢ dom ·N = dom ( ·o ↾ (N × N)) |
| 8 | df-ni 10758 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
| 9 | difss 4081 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 10 | 8, 9 | eqsstri 3976 | . . . . . 6 ⊢ N ⊆ ω |
| 11 | omsson 7795 | . . . . . 6 ⊢ ω ⊆ On | |
| 12 | 10, 11 | sstri 3939 | . . . . 5 ⊢ N ⊆ On |
| 13 | anidm 564 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
| 14 | 12, 13 | mpbir 231 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
| 15 | xpss12 5626 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
| 17 | dfss 3916 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
| 18 | 16, 17 | mpbi 230 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
| 19 | 5, 7, 18 | 3eqtr4i 2764 | 1 ⊢ dom ·N = (N × N) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∖ cdif 3894 ∩ cin 3896 ⊆ wss 3897 ∅c0 4278 {csn 4571 × cxp 5609 dom cdm 5611 ↾ cres 5613 Oncon0 6301 ωcom 7791 ·o comu 8378 Ncnpi 10730 ·N cmi 10732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-omul 8385 df-ni 10758 df-mi 10760 |
| This theorem is referenced by: mulcompi 10782 mulasspi 10783 distrpi 10784 mulcanpi 10786 ltmpi 10790 ordpipq 10828 |
| Copyright terms: Public domain | W3C validator |