| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmulpi | Structured version Visualization version GIF version | ||
| Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dmmulpi | ⊢ dom ·N = (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 5972 | . . 3 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o ) | |
| 2 | fnom 8450 | . . . . 5 ⊢ ·o Fn (On × On) | |
| 3 | 2 | fndmi 6604 | . . . 4 ⊢ dom ·o = (On × On) |
| 4 | 3 | ineq2i 4176 | . . 3 ⊢ ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On)) |
| 5 | 1, 4 | eqtri 2752 | . 2 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
| 6 | df-mi 10803 | . . 3 ⊢ ·N = ( ·o ↾ (N × N)) | |
| 7 | 6 | dmeqi 5858 | . 2 ⊢ dom ·N = dom ( ·o ↾ (N × N)) |
| 8 | df-ni 10801 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
| 9 | difss 4095 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 10 | 8, 9 | eqsstri 3990 | . . . . . 6 ⊢ N ⊆ ω |
| 11 | omsson 7826 | . . . . . 6 ⊢ ω ⊆ On | |
| 12 | 10, 11 | sstri 3953 | . . . . 5 ⊢ N ⊆ On |
| 13 | anidm 564 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
| 14 | 12, 13 | mpbir 231 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
| 15 | xpss12 5646 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
| 17 | dfss 3930 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
| 18 | 16, 17 | mpbi 230 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
| 19 | 5, 7, 18 | 3eqtr4i 2762 | 1 ⊢ dom ·N = (N × N) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∖ cdif 3908 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 {csn 4585 × cxp 5629 dom cdm 5631 ↾ cres 5633 Oncon0 6320 ωcom 7822 ·o comu 8409 Ncnpi 10773 ·N cmi 10775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-omul 8416 df-ni 10801 df-mi 10803 |
| This theorem is referenced by: mulcompi 10825 mulasspi 10826 distrpi 10827 mulcanpi 10829 ltmpi 10833 ordpipq 10871 |
| Copyright terms: Public domain | W3C validator |