MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmulpi Structured version   Visualization version   GIF version

Theorem dmmulpi 10889
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmmulpi dom ·N = (N × N)

Proof of Theorem dmmulpi
StepHypRef Expression
1 dmres 6003 . . 3 dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o )
2 fnom 8512 . . . . 5 ·o Fn (On × On)
32fndmi 6653 . . . 4 dom ·o = (On × On)
43ineq2i 4209 . . 3 ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On))
51, 4eqtri 2759 . 2 dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On))
6 df-mi 10872 . . 3 ·N = ( ·o ↾ (N × N))
76dmeqi 5904 . 2 dom ·N = dom ( ·o ↾ (N × N))
8 df-ni 10870 . . . . . . 7 N = (ω ∖ {∅})
9 difss 4131 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
108, 9eqsstri 4016 . . . . . 6 N ⊆ ω
11 omsson 7862 . . . . . 6 ω ⊆ On
1210, 11sstri 3991 . . . . 5 N ⊆ On
13 anidm 564 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1412, 13mpbir 230 . . . 4 (N ⊆ On ∧ N ⊆ On)
15 xpss12 5691 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1614, 15ax-mp 5 . . 3 (N × N) ⊆ (On × On)
17 dfss 3966 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1816, 17mpbi 229 . 2 (N × N) = ((N × N) ∩ (On × On))
195, 7, 183eqtr4i 2769 1 dom ·N = (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  cdif 3945  cin 3947  wss 3948  c0 4322  {csn 4628   × cxp 5674  dom cdm 5676  cres 5678  Oncon0 6364  ωcom 7858   ·o comu 8467  Ncnpi 10842   ·N cmi 10844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-omul 8474  df-ni 10870  df-mi 10872
This theorem is referenced by:  mulcompi  10894  mulasspi  10895  distrpi  10896  mulcanpi  10898  ltmpi  10902  ordpipq  10940
  Copyright terms: Public domain W3C validator