MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmulpi Structured version   Visualization version   GIF version

Theorem dmmulpi 10960
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmmulpi dom ·N = (N × N)

Proof of Theorem dmmulpi
StepHypRef Expression
1 dmres 6041 . . 3 dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o )
2 fnom 8565 . . . . 5 ·o Fn (On × On)
32fndmi 6683 . . . 4 dom ·o = (On × On)
43ineq2i 4238 . . 3 ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On))
51, 4eqtri 2768 . 2 dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On))
6 df-mi 10943 . . 3 ·N = ( ·o ↾ (N × N))
76dmeqi 5929 . 2 dom ·N = dom ( ·o ↾ (N × N))
8 df-ni 10941 . . . . . . 7 N = (ω ∖ {∅})
9 difss 4159 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
108, 9eqsstri 4043 . . . . . 6 N ⊆ ω
11 omsson 7907 . . . . . 6 ω ⊆ On
1210, 11sstri 4018 . . . . 5 N ⊆ On
13 anidm 564 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1412, 13mpbir 231 . . . 4 (N ⊆ On ∧ N ⊆ On)
15 xpss12 5715 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1614, 15ax-mp 5 . . 3 (N × N) ⊆ (On × On)
17 dfss 3995 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1816, 17mpbi 230 . 2 (N × N) = ((N × N) ∩ (On × On))
195, 7, 183eqtr4i 2778 1 dom ·N = (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  cdif 3973  cin 3975  wss 3976  c0 4352  {csn 4648   × cxp 5698  dom cdm 5700  cres 5702  Oncon0 6395  ωcom 7903   ·o comu 8520  Ncnpi 10913   ·N cmi 10915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-omul 8527  df-ni 10941  df-mi 10943
This theorem is referenced by:  mulcompi  10965  mulasspi  10966  distrpi  10967  mulcanpi  10969  ltmpi  10973  ordpipq  11011
  Copyright terms: Public domain W3C validator