![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmulpi | Structured version Visualization version GIF version |
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmmulpi | ⊢ dom ·N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 6017 | . . 3 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o ) | |
2 | fnom 8530 | . . . . 5 ⊢ ·o Fn (On × On) | |
3 | 2 | fndmi 6659 | . . . 4 ⊢ dom ·o = (On × On) |
4 | 3 | ineq2i 4207 | . . 3 ⊢ ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On)) |
5 | 1, 4 | eqtri 2753 | . 2 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
6 | df-mi 10904 | . . 3 ⊢ ·N = ( ·o ↾ (N × N)) | |
7 | 6 | dmeqi 5907 | . 2 ⊢ dom ·N = dom ( ·o ↾ (N × N)) |
8 | df-ni 10902 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
9 | difss 4128 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
10 | 8, 9 | eqsstri 4011 | . . . . . 6 ⊢ N ⊆ ω |
11 | omsson 7875 | . . . . . 6 ⊢ ω ⊆ On | |
12 | 10, 11 | sstri 3986 | . . . . 5 ⊢ N ⊆ On |
13 | anidm 563 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
14 | 12, 13 | mpbir 230 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
15 | xpss12 5693 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
17 | dfss 3963 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
18 | 16, 17 | mpbi 229 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
19 | 5, 7, 18 | 3eqtr4i 2763 | 1 ⊢ dom ·N = (N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 ∖ cdif 3941 ∩ cin 3943 ⊆ wss 3944 ∅c0 4322 {csn 4630 × cxp 5676 dom cdm 5678 ↾ cres 5680 Oncon0 6371 ωcom 7871 ·o comu 8485 Ncnpi 10874 ·N cmi 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fv 6557 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-omul 8492 df-ni 10902 df-mi 10904 |
This theorem is referenced by: mulcompi 10926 mulasspi 10927 distrpi 10928 mulcanpi 10930 ltmpi 10934 ordpipq 10972 |
Copyright terms: Public domain | W3C validator |