MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmulpi Structured version   Visualization version   GIF version

Theorem dmmulpi 10578
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmmulpi dom ·N = (N × N)

Proof of Theorem dmmulpi
StepHypRef Expression
1 dmres 5902 . . 3 dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o )
2 fnom 8301 . . . . 5 ·o Fn (On × On)
32fndmi 6521 . . . 4 dom ·o = (On × On)
43ineq2i 4140 . . 3 ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On))
51, 4eqtri 2766 . 2 dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On))
6 df-mi 10561 . . 3 ·N = ( ·o ↾ (N × N))
76dmeqi 5802 . 2 dom ·N = dom ( ·o ↾ (N × N))
8 df-ni 10559 . . . . . . 7 N = (ω ∖ {∅})
9 difss 4062 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
108, 9eqsstri 3951 . . . . . 6 N ⊆ ω
11 omsson 7691 . . . . . 6 ω ⊆ On
1210, 11sstri 3926 . . . . 5 N ⊆ On
13 anidm 564 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1412, 13mpbir 230 . . . 4 (N ⊆ On ∧ N ⊆ On)
15 xpss12 5595 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1614, 15ax-mp 5 . . 3 (N × N) ⊆ (On × On)
17 dfss 3901 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1816, 17mpbi 229 . 2 (N × N) = ((N × N) ∩ (On × On))
195, 7, 183eqtr4i 2776 1 dom ·N = (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  cdif 3880  cin 3882  wss 3883  c0 4253  {csn 4558   × cxp 5578  dom cdm 5580  cres 5582  Oncon0 6251  ωcom 7687   ·o comu 8265  Ncnpi 10531   ·N cmi 10533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-omul 8272  df-ni 10559  df-mi 10561
This theorem is referenced by:  mulcompi  10583  mulasspi  10584  distrpi  10585  mulcanpi  10587  ltmpi  10591  ordpipq  10629
  Copyright terms: Public domain W3C validator