![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmulpi | Structured version Visualization version GIF version |
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmmulpi | ⊢ dom ·N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 6031 | . . 3 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o ) | |
2 | fnom 8545 | . . . . 5 ⊢ ·o Fn (On × On) | |
3 | 2 | fndmi 6672 | . . . 4 ⊢ dom ·o = (On × On) |
4 | 3 | ineq2i 4224 | . . 3 ⊢ ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On)) |
5 | 1, 4 | eqtri 2762 | . 2 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
6 | df-mi 10911 | . . 3 ⊢ ·N = ( ·o ↾ (N × N)) | |
7 | 6 | dmeqi 5917 | . 2 ⊢ dom ·N = dom ( ·o ↾ (N × N)) |
8 | df-ni 10909 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
9 | difss 4145 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
10 | 8, 9 | eqsstri 4029 | . . . . . 6 ⊢ N ⊆ ω |
11 | omsson 7890 | . . . . . 6 ⊢ ω ⊆ On | |
12 | 10, 11 | sstri 4004 | . . . . 5 ⊢ N ⊆ On |
13 | anidm 564 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
14 | 12, 13 | mpbir 231 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
15 | xpss12 5703 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
17 | dfss 3981 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
18 | 16, 17 | mpbi 230 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
19 | 5, 7, 18 | 3eqtr4i 2772 | 1 ⊢ dom ·N = (N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1536 ∖ cdif 3959 ∩ cin 3961 ⊆ wss 3962 ∅c0 4338 {csn 4630 × cxp 5686 dom cdm 5688 ↾ cres 5690 Oncon0 6385 ωcom 7886 ·o comu 8502 Ncnpi 10881 ·N cmi 10883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-omul 8509 df-ni 10909 df-mi 10911 |
This theorem is referenced by: mulcompi 10933 mulasspi 10934 distrpi 10935 mulcanpi 10937 ltmpi 10941 ordpipq 10979 |
Copyright terms: Public domain | W3C validator |