MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmulpi Structured version   Visualization version   GIF version

Theorem dmmulpi 10748
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmmulpi dom ·N = (N × N)

Proof of Theorem dmmulpi
StepHypRef Expression
1 dmres 5945 . . 3 dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o )
2 fnom 8410 . . . . 5 ·o Fn (On × On)
32fndmi 6589 . . . 4 dom ·o = (On × On)
43ineq2i 4156 . . 3 ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On))
51, 4eqtri 2764 . 2 dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On))
6 df-mi 10731 . . 3 ·N = ( ·o ↾ (N × N))
76dmeqi 5846 . 2 dom ·N = dom ( ·o ↾ (N × N))
8 df-ni 10729 . . . . . . 7 N = (ω ∖ {∅})
9 difss 4078 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
108, 9eqsstri 3966 . . . . . 6 N ⊆ ω
11 omsson 7784 . . . . . 6 ω ⊆ On
1210, 11sstri 3941 . . . . 5 N ⊆ On
13 anidm 565 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1412, 13mpbir 230 . . . 4 (N ⊆ On ∧ N ⊆ On)
15 xpss12 5635 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1614, 15ax-mp 5 . . 3 (N × N) ⊆ (On × On)
17 dfss 3916 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1816, 17mpbi 229 . 2 (N × N) = ((N × N) ∩ (On × On))
195, 7, 183eqtr4i 2774 1 dom ·N = (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1540  cdif 3895  cin 3897  wss 3898  c0 4269  {csn 4573   × cxp 5618  dom cdm 5620  cres 5622  Oncon0 6302  ωcom 7780   ·o comu 8365  Ncnpi 10701   ·N cmi 10703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-fv 6487  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-omul 8372  df-ni 10729  df-mi 10731
This theorem is referenced by:  mulcompi  10753  mulasspi  10754  distrpi  10755  mulcanpi  10757  ltmpi  10761  ordpipq  10799
  Copyright terms: Public domain W3C validator