MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmulpi Structured version   Visualization version   GIF version

Theorem dmmulpi 10844
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmmulpi dom ·N = (N × N)

Proof of Theorem dmmulpi
StepHypRef Expression
1 dmres 5983 . . 3 dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o )
2 fnom 8473 . . . . 5 ·o Fn (On × On)
32fndmi 6622 . . . 4 dom ·o = (On × On)
43ineq2i 4180 . . 3 ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On))
51, 4eqtri 2752 . 2 dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On))
6 df-mi 10827 . . 3 ·N = ( ·o ↾ (N × N))
76dmeqi 5868 . 2 dom ·N = dom ( ·o ↾ (N × N))
8 df-ni 10825 . . . . . . 7 N = (ω ∖ {∅})
9 difss 4099 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
108, 9eqsstri 3993 . . . . . 6 N ⊆ ω
11 omsson 7846 . . . . . 6 ω ⊆ On
1210, 11sstri 3956 . . . . 5 N ⊆ On
13 anidm 564 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1412, 13mpbir 231 . . . 4 (N ⊆ On ∧ N ⊆ On)
15 xpss12 5653 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1614, 15ax-mp 5 . . 3 (N × N) ⊆ (On × On)
17 dfss 3933 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1816, 17mpbi 230 . 2 (N × N) = ((N × N) ∩ (On × On))
195, 7, 183eqtr4i 2762 1 dom ·N = (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  cdif 3911  cin 3913  wss 3914  c0 4296  {csn 4589   × cxp 5636  dom cdm 5638  cres 5640  Oncon0 6332  ωcom 7842   ·o comu 8432  Ncnpi 10797   ·N cmi 10799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-omul 8439  df-ni 10825  df-mi 10827
This theorem is referenced by:  mulcompi  10849  mulasspi  10850  distrpi  10851  mulcanpi  10853  ltmpi  10857  ordpipq  10895
  Copyright terms: Public domain W3C validator