MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmulpi Structured version   Visualization version   GIF version

Theorem dmmulpi 10785
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmmulpi dom ·N = (N × N)

Proof of Theorem dmmulpi
StepHypRef Expression
1 dmres 5963 . . 3 dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o )
2 fnom 8427 . . . . 5 ·o Fn (On × On)
32fndmi 6586 . . . 4 dom ·o = (On × On)
43ineq2i 4168 . . 3 ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On))
51, 4eqtri 2752 . 2 dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On))
6 df-mi 10768 . . 3 ·N = ( ·o ↾ (N × N))
76dmeqi 5847 . 2 dom ·N = dom ( ·o ↾ (N × N))
8 df-ni 10766 . . . . . . 7 N = (ω ∖ {∅})
9 difss 4087 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
108, 9eqsstri 3982 . . . . . 6 N ⊆ ω
11 omsson 7803 . . . . . 6 ω ⊆ On
1210, 11sstri 3945 . . . . 5 N ⊆ On
13 anidm 564 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1412, 13mpbir 231 . . . 4 (N ⊆ On ∧ N ⊆ On)
15 xpss12 5634 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1614, 15ax-mp 5 . . 3 (N × N) ⊆ (On × On)
17 dfss 3922 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1816, 17mpbi 230 . 2 (N × N) = ((N × N) ∩ (On × On))
195, 7, 183eqtr4i 2762 1 dom ·N = (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  cdif 3900  cin 3902  wss 3903  c0 4284  {csn 4577   × cxp 5617  dom cdm 5619  cres 5621  Oncon0 6307  ωcom 7799   ·o comu 8386  Ncnpi 10738   ·N cmi 10740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-omul 8393  df-ni 10766  df-mi 10768
This theorem is referenced by:  mulcompi  10790  mulasspi  10791  distrpi  10792  mulcanpi  10794  ltmpi  10798  ordpipq  10836
  Copyright terms: Public domain W3C validator