Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmmulpi | Structured version Visualization version GIF version |
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmmulpi | ⊢ dom ·N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5902 | . . 3 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o ) | |
2 | fnom 8301 | . . . . 5 ⊢ ·o Fn (On × On) | |
3 | 2 | fndmi 6521 | . . . 4 ⊢ dom ·o = (On × On) |
4 | 3 | ineq2i 4140 | . . 3 ⊢ ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On)) |
5 | 1, 4 | eqtri 2766 | . 2 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
6 | df-mi 10561 | . . 3 ⊢ ·N = ( ·o ↾ (N × N)) | |
7 | 6 | dmeqi 5802 | . 2 ⊢ dom ·N = dom ( ·o ↾ (N × N)) |
8 | df-ni 10559 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
9 | difss 4062 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
10 | 8, 9 | eqsstri 3951 | . . . . . 6 ⊢ N ⊆ ω |
11 | omsson 7691 | . . . . . 6 ⊢ ω ⊆ On | |
12 | 10, 11 | sstri 3926 | . . . . 5 ⊢ N ⊆ On |
13 | anidm 564 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
14 | 12, 13 | mpbir 230 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
15 | xpss12 5595 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
17 | dfss 3901 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
18 | 16, 17 | mpbi 229 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
19 | 5, 7, 18 | 3eqtr4i 2776 | 1 ⊢ dom ·N = (N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 × cxp 5578 dom cdm 5580 ↾ cres 5582 Oncon0 6251 ωcom 7687 ·o comu 8265 Ncnpi 10531 ·N cmi 10533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-omul 8272 df-ni 10559 df-mi 10561 |
This theorem is referenced by: mulcompi 10583 mulasspi 10584 distrpi 10585 mulcanpi 10587 ltmpi 10591 ordpipq 10629 |
Copyright terms: Public domain | W3C validator |