![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmulpi | Structured version Visualization version GIF version |
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmmulpi | ⊢ dom ·N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 6003 | . . 3 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o ) | |
2 | fnom 8512 | . . . . 5 ⊢ ·o Fn (On × On) | |
3 | 2 | fndmi 6653 | . . . 4 ⊢ dom ·o = (On × On) |
4 | 3 | ineq2i 4209 | . . 3 ⊢ ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On)) |
5 | 1, 4 | eqtri 2759 | . 2 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
6 | df-mi 10872 | . . 3 ⊢ ·N = ( ·o ↾ (N × N)) | |
7 | 6 | dmeqi 5904 | . 2 ⊢ dom ·N = dom ( ·o ↾ (N × N)) |
8 | df-ni 10870 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
9 | difss 4131 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
10 | 8, 9 | eqsstri 4016 | . . . . . 6 ⊢ N ⊆ ω |
11 | omsson 7862 | . . . . . 6 ⊢ ω ⊆ On | |
12 | 10, 11 | sstri 3991 | . . . . 5 ⊢ N ⊆ On |
13 | anidm 564 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
14 | 12, 13 | mpbir 230 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
15 | xpss12 5691 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
17 | dfss 3966 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
18 | 16, 17 | mpbi 229 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
19 | 5, 7, 18 | 3eqtr4i 2769 | 1 ⊢ dom ·N = (N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∖ cdif 3945 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 {csn 4628 × cxp 5674 dom cdm 5676 ↾ cres 5678 Oncon0 6364 ωcom 7858 ·o comu 8467 Ncnpi 10842 ·N cmi 10844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-omul 8474 df-ni 10870 df-mi 10872 |
This theorem is referenced by: mulcompi 10894 mulasspi 10895 distrpi 10896 mulcanpi 10898 ltmpi 10902 ordpipq 10940 |
Copyright terms: Public domain | W3C validator |