MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmulpi Structured version   Visualization version   GIF version

Theorem dmmulpi 10470
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmmulpi dom ·N = (N × N)

Proof of Theorem dmmulpi
StepHypRef Expression
1 dmres 5858 . . 3 dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o )
2 fnom 8214 . . . . 5 ·o Fn (On × On)
32fndmi 6460 . . . 4 dom ·o = (On × On)
43ineq2i 4110 . . 3 ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On))
51, 4eqtri 2759 . 2 dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On))
6 df-mi 10453 . . 3 ·N = ( ·o ↾ (N × N))
76dmeqi 5758 . 2 dom ·N = dom ( ·o ↾ (N × N))
8 df-ni 10451 . . . . . . 7 N = (ω ∖ {∅})
9 difss 4032 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
108, 9eqsstri 3921 . . . . . 6 N ⊆ ω
11 omsson 7626 . . . . . 6 ω ⊆ On
1210, 11sstri 3896 . . . . 5 N ⊆ On
13 anidm 568 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1412, 13mpbir 234 . . . 4 (N ⊆ On ∧ N ⊆ On)
15 xpss12 5551 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1614, 15ax-mp 5 . . 3 (N × N) ⊆ (On × On)
17 dfss 3871 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1816, 17mpbi 233 . 2 (N × N) = ((N × N) ∩ (On × On))
195, 7, 183eqtr4i 2769 1 dom ·N = (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  cdif 3850  cin 3852  wss 3853  c0 4223  {csn 4527   × cxp 5534  dom cdm 5536  cres 5538  Oncon0 6191  ωcom 7622   ·o comu 8178  Ncnpi 10423   ·N cmi 10425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-omul 8185  df-ni 10451  df-mi 10453
This theorem is referenced by:  mulcompi  10475  mulasspi  10476  distrpi  10477  mulcanpi  10479  ltmpi  10483  ordpipq  10521
  Copyright terms: Public domain W3C validator