| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmulpi | Structured version Visualization version GIF version | ||
| Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dmmulpi | ⊢ dom ·N = (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 5963 | . . 3 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o ) | |
| 2 | fnom 8427 | . . . . 5 ⊢ ·o Fn (On × On) | |
| 3 | 2 | fndmi 6586 | . . . 4 ⊢ dom ·o = (On × On) |
| 4 | 3 | ineq2i 4168 | . . 3 ⊢ ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On)) |
| 5 | 1, 4 | eqtri 2752 | . 2 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
| 6 | df-mi 10768 | . . 3 ⊢ ·N = ( ·o ↾ (N × N)) | |
| 7 | 6 | dmeqi 5847 | . 2 ⊢ dom ·N = dom ( ·o ↾ (N × N)) |
| 8 | df-ni 10766 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
| 9 | difss 4087 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 10 | 8, 9 | eqsstri 3982 | . . . . . 6 ⊢ N ⊆ ω |
| 11 | omsson 7803 | . . . . . 6 ⊢ ω ⊆ On | |
| 12 | 10, 11 | sstri 3945 | . . . . 5 ⊢ N ⊆ On |
| 13 | anidm 564 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
| 14 | 12, 13 | mpbir 231 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
| 15 | xpss12 5634 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
| 17 | dfss 3922 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
| 18 | 16, 17 | mpbi 230 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
| 19 | 5, 7, 18 | 3eqtr4i 2762 | 1 ⊢ dom ·N = (N × N) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∖ cdif 3900 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 {csn 4577 × cxp 5617 dom cdm 5619 ↾ cres 5621 Oncon0 6307 ωcom 7799 ·o comu 8386 Ncnpi 10738 ·N cmi 10740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-omul 8393 df-ni 10766 df-mi 10768 |
| This theorem is referenced by: mulcompi 10790 mulasspi 10791 distrpi 10792 mulcanpi 10794 ltmpi 10798 ordpipq 10836 |
| Copyright terms: Public domain | W3C validator |