MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmulpi Structured version   Visualization version   GIF version

Theorem dmmulpi 10777
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmmulpi dom ·N = (N × N)

Proof of Theorem dmmulpi
StepHypRef Expression
1 dmres 5956 . . 3 dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o )
2 fnom 8419 . . . . 5 ·o Fn (On × On)
32fndmi 6580 . . . 4 dom ·o = (On × On)
43ineq2i 4162 . . 3 ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On))
51, 4eqtri 2754 . 2 dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On))
6 df-mi 10760 . . 3 ·N = ( ·o ↾ (N × N))
76dmeqi 5839 . 2 dom ·N = dom ( ·o ↾ (N × N))
8 df-ni 10758 . . . . . . 7 N = (ω ∖ {∅})
9 difss 4081 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
108, 9eqsstri 3976 . . . . . 6 N ⊆ ω
11 omsson 7795 . . . . . 6 ω ⊆ On
1210, 11sstri 3939 . . . . 5 N ⊆ On
13 anidm 564 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1412, 13mpbir 231 . . . 4 (N ⊆ On ∧ N ⊆ On)
15 xpss12 5626 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1614, 15ax-mp 5 . . 3 (N × N) ⊆ (On × On)
17 dfss 3916 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1816, 17mpbi 230 . 2 (N × N) = ((N × N) ∩ (On × On))
195, 7, 183eqtr4i 2764 1 dom ·N = (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  cdif 3894  cin 3896  wss 3897  c0 4278  {csn 4571   × cxp 5609  dom cdm 5611  cres 5613  Oncon0 6301  ωcom 7791   ·o comu 8378  Ncnpi 10730   ·N cmi 10732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-omul 8385  df-ni 10758  df-mi 10760
This theorem is referenced by:  mulcompi  10782  mulasspi  10783  distrpi  10784  mulcanpi  10786  ltmpi  10790  ordpipq  10828
  Copyright terms: Public domain W3C validator