MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmulpi Structured version   Visualization version   GIF version

Theorem dmmulpi 10921
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmmulpi dom ·N = (N × N)

Proof of Theorem dmmulpi
StepHypRef Expression
1 dmres 6017 . . 3 dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o )
2 fnom 8530 . . . . 5 ·o Fn (On × On)
32fndmi 6659 . . . 4 dom ·o = (On × On)
43ineq2i 4207 . . 3 ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On))
51, 4eqtri 2753 . 2 dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On))
6 df-mi 10904 . . 3 ·N = ( ·o ↾ (N × N))
76dmeqi 5907 . 2 dom ·N = dom ( ·o ↾ (N × N))
8 df-ni 10902 . . . . . . 7 N = (ω ∖ {∅})
9 difss 4128 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
108, 9eqsstri 4011 . . . . . 6 N ⊆ ω
11 omsson 7875 . . . . . 6 ω ⊆ On
1210, 11sstri 3986 . . . . 5 N ⊆ On
13 anidm 563 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1412, 13mpbir 230 . . . 4 (N ⊆ On ∧ N ⊆ On)
15 xpss12 5693 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1614, 15ax-mp 5 . . 3 (N × N) ⊆ (On × On)
17 dfss 3963 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1816, 17mpbi 229 . 2 (N × N) = ((N × N) ∩ (On × On))
195, 7, 183eqtr4i 2763 1 dom ·N = (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  cdif 3941  cin 3943  wss 3944  c0 4322  {csn 4630   × cxp 5676  dom cdm 5678  cres 5680  Oncon0 6371  ωcom 7871   ·o comu 8485  Ncnpi 10874   ·N cmi 10876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-omul 8492  df-ni 10902  df-mi 10904
This theorem is referenced by:  mulcompi  10926  mulasspi  10927  distrpi  10928  mulcanpi  10930  ltmpi  10934  ordpipq  10972
  Copyright terms: Public domain W3C validator