MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmmulpi Structured version   Visualization version   GIF version

Theorem dmmulpi 10313
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmmulpi dom ·N = (N × N)

Proof of Theorem dmmulpi
StepHypRef Expression
1 dmres 5875 . . 3 dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o )
2 fnom 8134 . . . . 5 ·o Fn (On × On)
3 fndm 6455 . . . . 5 ( ·o Fn (On × On) → dom ·o = (On × On))
42, 3ax-mp 5 . . . 4 dom ·o = (On × On)
54ineq2i 4186 . . 3 ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On))
61, 5eqtri 2844 . 2 dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On))
7 df-mi 10296 . . 3 ·N = ( ·o ↾ (N × N))
87dmeqi 5773 . 2 dom ·N = dom ( ·o ↾ (N × N))
9 df-ni 10294 . . . . . . 7 N = (ω ∖ {∅})
10 difss 4108 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
119, 10eqsstri 4001 . . . . . 6 N ⊆ ω
12 omsson 7584 . . . . . 6 ω ⊆ On
1311, 12sstri 3976 . . . . 5 N ⊆ On
14 anidm 567 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1513, 14mpbir 233 . . . 4 (N ⊆ On ∧ N ⊆ On)
16 xpss12 5570 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1715, 16ax-mp 5 . . 3 (N × N) ⊆ (On × On)
18 dfss 3953 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1917, 18mpbi 232 . 2 (N × N) = ((N × N) ∩ (On × On))
206, 8, 193eqtr4i 2854 1 dom ·N = (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  cdif 3933  cin 3935  wss 3936  c0 4291  {csn 4567   × cxp 5553  dom cdm 5555  cres 5557  Oncon0 6191   Fn wfn 6350  ωcom 7580   ·o comu 8100  Ncnpi 10266   ·N cmi 10268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-omul 8107  df-ni 10294  df-mi 10296
This theorem is referenced by:  mulcompi  10318  mulasspi  10319  distrpi  10320  mulcanpi  10322  ltmpi  10326  ordpipq  10364
  Copyright terms: Public domain W3C validator