Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tailini | Structured version Visualization version GIF version |
Description: A tail contains its initial element. (Contributed by Jeff Hankins, 25-Nov-2009.) |
Ref | Expression |
---|---|
tailini.1 | ⊢ 𝑋 = dom 𝐷 |
Ref | Expression |
---|---|
tailini | ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ((tail‘𝐷)‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tailini.1 | . . 3 ⊢ 𝑋 = dom 𝐷 | |
2 | 1 | dirref 18364 | . 2 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝐷𝐴) |
3 | 1 | eltail 34608 | . . 3 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐴)) |
4 | 3 | 3anidm23 1421 | . 2 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐴)) |
5 | 2, 4 | mpbird 257 | 1 ⊢ ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ((tail‘𝐷)‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 dom cdm 5600 ‘cfv 6458 DirRelcdir 18357 tailctail 18358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-dir 18359 df-tail 18360 |
This theorem is referenced by: tailfb 34611 |
Copyright terms: Public domain | W3C validator |