Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailini Structured version   Visualization version   GIF version

Theorem tailini 35261
Description: A tail contains its initial element. (Contributed by Jeff Hankins, 25-Nov-2009.)
Hypothesis
Ref Expression
tailini.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailini ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) β†’ 𝐴 ∈ ((tailβ€˜π·)β€˜π΄))

Proof of Theorem tailini
StepHypRef Expression
1 tailini.1 . . 3 𝑋 = dom 𝐷
21dirref 18554 . 2 ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) β†’ 𝐴𝐷𝐴)
31eltail 35259 . . 3 ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (𝐴 ∈ ((tailβ€˜π·)β€˜π΄) ↔ 𝐴𝐷𝐴))
433anidm23 1422 . 2 ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) β†’ (𝐴 ∈ ((tailβ€˜π·)β€˜π΄) ↔ 𝐴𝐷𝐴))
52, 4mpbird 257 1 ((𝐷 ∈ DirRel ∧ 𝐴 ∈ 𝑋) β†’ 𝐴 ∈ ((tailβ€˜π·)β€˜π΄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107   class class class wbr 5149  dom cdm 5677  β€˜cfv 6544  DirRelcdir 18547  tailctail 18548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-dir 18549  df-tail 18550
This theorem is referenced by:  tailfb  35262
  Copyright terms: Public domain W3C validator