Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailini Structured version   Visualization version   GIF version

Theorem tailini 34610
Description: A tail contains its initial element. (Contributed by Jeff Hankins, 25-Nov-2009.)
Hypothesis
Ref Expression
tailini.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailini ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → 𝐴 ∈ ((tail‘𝐷)‘𝐴))

Proof of Theorem tailini
StepHypRef Expression
1 tailini.1 . . 3 𝑋 = dom 𝐷
21dirref 18364 . 2 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → 𝐴𝐷𝐴)
31eltail 34608 . . 3 ((𝐷 ∈ DirRel ∧ 𝐴𝑋𝐴𝑋) → (𝐴 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐴))
433anidm23 1421 . 2 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → (𝐴 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐴))
52, 4mpbird 257 1 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → 𝐴 ∈ ((tail‘𝐷)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104   class class class wbr 5081  dom cdm 5600  cfv 6458  DirRelcdir 18357  tailctail 18358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-dir 18359  df-tail 18360
This theorem is referenced by:  tailfb  34611
  Copyright terms: Public domain W3C validator