Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailini Structured version   Visualization version   GIF version

Theorem tailini 36394
Description: A tail contains its initial element. (Contributed by Jeff Hankins, 25-Nov-2009.)
Hypothesis
Ref Expression
tailini.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailini ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → 𝐴 ∈ ((tail‘𝐷)‘𝐴))

Proof of Theorem tailini
StepHypRef Expression
1 tailini.1 . . 3 𝑋 = dom 𝐷
21dirref 18611 . 2 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → 𝐴𝐷𝐴)
31eltail 36392 . . 3 ((𝐷 ∈ DirRel ∧ 𝐴𝑋𝐴𝑋) → (𝐴 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐴))
433anidm23 1423 . 2 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → (𝐴 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐴))
52, 4mpbird 257 1 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → 𝐴 ∈ ((tail‘𝐷)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5119  dom cdm 5654  cfv 6531  DirRelcdir 18604  tailctail 18605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-dir 18606  df-tail 18607
This theorem is referenced by:  tailfb  36395
  Copyright terms: Public domain W3C validator