| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itgeq12sdv | Structured version Visualization version GIF version | ||
| Description: Equality theorem for an integral. Deduction form. General version of itgeq1d 45922 and itgeq2sdv 36167. (Contributed by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| itgeq12sdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| itgeq12sdv.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| itgeq12sdv | ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgeq12sdv.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 2 | 1 | oveq1d 7415 | . . . . . . . 8 ⊢ (𝜑 → (𝐶 / (i↑𝑘)) = (𝐷 / (i↑𝑘))) |
| 3 | 2 | fveq2d 6877 | . . . . . . 7 ⊢ (𝜑 → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘)))) |
| 4 | itgeq12sdv.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 5 | 4 | eleq2d 2819 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 6 | 5 | anbi1d 631 | . . . . . . . 8 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦))) |
| 7 | 6 | ifbid 4522 | . . . . . . 7 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)) |
| 8 | 3, 7 | csbeq12dv 3881 | . . . . . 6 ⊢ (𝜑 → ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = ⦋(ℜ‘(𝐷 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)) |
| 9 | 8 | mpteq2dv 5213 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))) |
| 10 | 9 | fveq2d 6877 | . . . 4 ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))) |
| 11 | 10 | oveq2d 7416 | . . 3 ⊢ (𝜑 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))) |
| 12 | 11 | sumeq2sdv 15708 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))) |
| 13 | df-itg 25563 | . 2 ⊢ ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | |
| 14 | df-itg 25563 | . 2 ⊢ ∫𝐵𝐷 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐷 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | |
| 15 | 12, 13, 14 | 3eqtr4g 2794 | 1 ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⦋csb 3872 ifcif 4498 class class class wbr 5117 ↦ cmpt 5199 ‘cfv 6528 (class class class)co 7400 ℝcr 11121 0cc0 11122 ici 11124 · cmul 11127 ≤ cle 11263 / cdiv 11887 3c3 12289 ...cfz 13514 ↑cexp 14069 ℜcre 15105 Σcsu 15691 ∫2citg2 25556 ∫citg 25558 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-xp 5658 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-iota 6481 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-seq 14010 df-sum 15692 df-itg 25563 |
| This theorem is referenced by: itgeq2sdv 36167 ditgeq123dv 36168 |
| Copyright terms: Public domain | W3C validator |