Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgeq12sdv Structured version   Visualization version   GIF version

Theorem itgeq12sdv 36263
Description: Equality theorem for an integral. Deduction form. General version of itgeq1d 46065 and itgeq2sdv 36264. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
itgeq12sdv.1 (𝜑𝐴 = 𝐵)
itgeq12sdv.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
itgeq12sdv (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑥)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem itgeq12sdv
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgeq12sdv.2 . . . . . . . . 9 (𝜑𝐶 = 𝐷)
21oveq1d 7361 . . . . . . . 8 (𝜑 → (𝐶 / (i↑𝑘)) = (𝐷 / (i↑𝑘)))
32fveq2d 6826 . . . . . . 7 (𝜑 → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘))))
4 itgeq12sdv.1 . . . . . . . . . 10 (𝜑𝐴 = 𝐵)
54eleq2d 2817 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑥𝐵))
65anbi1d 631 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥𝐵 ∧ 0 ≤ 𝑦)))
76ifbid 4496 . . . . . . 7 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))
83, 7csbeq12dv 3854 . . . . . 6 (𝜑(ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = (ℜ‘(𝐷 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))
98mpteq2dv 5183 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))
109fveq2d 6826 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))
1110oveq2d 7362 . . 3 (𝜑 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))))
1211sumeq2sdv 15610 . 2 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0)))))
13 df-itg 25551 . 2 𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐶 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
14 df-itg 25551 . 2 𝐵𝐷 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐷 / (i↑𝑘))) / 𝑦if((𝑥𝐵 ∧ 0 ≤ 𝑦), 𝑦, 0))))
1512, 13, 143eqtr4g 2791 1 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  csb 3845  ifcif 4472   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  ici 11008   · cmul 11011  cle 11147   / cdiv 11774  3c3 12181  ...cfz 13407  cexp 13968  cre 15004  Σcsu 15593  2citg2 25544  citg 25546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-xp 5620  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-iota 6437  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seq 13909  df-sum 15594  df-itg 25551
This theorem is referenced by:  itgeq2sdv  36264  ditgeq123dv  36265
  Copyright terms: Public domain W3C validator