| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rninxp | Structured version Visualization version GIF version | ||
| Description: Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| rninxp | ⊢ (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss3 3935 | . 2 ⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) ↔ ∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝐶 ↾ 𝐴)) | |
| 2 | ssrnres 6151 | . 2 ⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵) | |
| 3 | df-ima 5651 | . . . . 5 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
| 4 | 3 | eleq2i 2820 | . . . 4 ⊢ (𝑦 ∈ (𝐶 “ 𝐴) ↔ 𝑦 ∈ ran (𝐶 ↾ 𝐴)) |
| 5 | vex 3451 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 6 | 5 | elima 6036 | . . . 4 ⊢ (𝑦 ∈ (𝐶 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
| 7 | 4, 6 | bitr3i 277 | . . 3 ⊢ (𝑦 ∈ ran (𝐶 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
| 8 | 7 | ralbii 3075 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝐶 ↾ 𝐴) ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
| 9 | 1, 2, 8 | 3bitr3i 301 | 1 ⊢ (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3913 ⊆ wss 3914 class class class wbr 5107 × cxp 5636 ran crn 5639 ↾ cres 5640 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: dminxp 6153 fncnv 6589 exfo 7077 brdom3 10481 brdom5 10482 brdom4 10483 |
| Copyright terms: Public domain | W3C validator |