| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rninxp | Structured version Visualization version GIF version | ||
| Description: Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| rninxp | ⊢ (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss3 3920 | . 2 ⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) ↔ ∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝐶 ↾ 𝐴)) | |
| 2 | ssrnres 6133 | . 2 ⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵) | |
| 3 | df-ima 5634 | . . . . 5 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
| 4 | 3 | eleq2i 2825 | . . . 4 ⊢ (𝑦 ∈ (𝐶 “ 𝐴) ↔ 𝑦 ∈ ran (𝐶 ↾ 𝐴)) |
| 5 | vex 3442 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 6 | 5 | elima 6021 | . . . 4 ⊢ (𝑦 ∈ (𝐶 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
| 7 | 4, 6 | bitr3i 277 | . . 3 ⊢ (𝑦 ∈ ran (𝐶 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
| 8 | 7 | ralbii 3080 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝐶 ↾ 𝐴) ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
| 9 | 1, 2, 8 | 3bitr3i 301 | 1 ⊢ (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ∃wrex 3058 ∩ cin 3898 ⊆ wss 3899 class class class wbr 5095 × cxp 5619 ran crn 5622 ↾ cres 5623 “ cima 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 |
| This theorem is referenced by: dminxp 6135 fncnv 6562 exfo 7047 brdom3 10429 brdom5 10430 brdom4 10431 |
| Copyright terms: Public domain | W3C validator |