Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem1 Structured version   Visualization version   GIF version

Theorem dnibndlem1 36009
Description: Lemma for dnibnd 36022. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem1.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem1.2 (𝜑𝐴 ∈ ℝ)
dnibndlem1.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
dnibndlem1 (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem1
StepHypRef Expression
1 dnibndlem1.3 . . . . 5 (𝜑𝐵 ∈ ℝ)
2 dnibndlem1.1 . . . . . 6 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
32dnival 36002 . . . . 5 (𝐵 ∈ ℝ → (𝑇𝐵) = (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
41, 3syl 17 . . . 4 (𝜑 → (𝑇𝐵) = (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
5 dnibndlem1.2 . . . . 5 (𝜑𝐴 ∈ ℝ)
62dnival 36002 . . . . 5 (𝐴 ∈ ℝ → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
75, 6syl 17 . . . 4 (𝜑 → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
84, 7oveq12d 7433 . . 3 (𝜑 → ((𝑇𝐵) − (𝑇𝐴)) = ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
98fveq2d 6895 . 2 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) = (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))
109breq1d 5153 1 (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098   class class class wbr 5143  cmpt 5226  cfv 6542  (class class class)co 7415  cr 11135  1c1 11137   + caddc 11139  cle 11277  cmin 11472   / cdiv 11899  2c2 12295  cfl 13785  abscabs 15211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7418
This theorem is referenced by:  dnibndlem2  36010  dnibndlem9  36017  dnibndlem12  36020
  Copyright terms: Public domain W3C validator