![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnibndlem1 | Structured version Visualization version GIF version |
Description: Lemma for dnibnd 35355. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
Ref | Expression |
---|---|
dnibndlem1.1 | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
dnibndlem1.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dnibndlem1.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
dnibndlem1 | ⊢ (𝜑 → ((abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnibndlem1.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | dnibndlem1.1 | . . . . . 6 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
3 | 2 | dnival 35335 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (𝑇‘𝐵) = (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑇‘𝐵) = (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) |
5 | dnibndlem1.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
6 | 2 | dnival 35335 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
8 | 4, 7 | oveq12d 7423 | . . 3 ⊢ (𝜑 → ((𝑇‘𝐵) − (𝑇‘𝐴)) = ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) |
9 | 8 | fveq2d 6892 | . 2 ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) = (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) |
10 | 9 | breq1d 5157 | 1 ⊢ (𝜑 → ((abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 class class class wbr 5147 ↦ cmpt 5230 ‘cfv 6540 (class class class)co 7405 ℝcr 11105 1c1 11107 + caddc 11109 ≤ cle 11245 − cmin 11440 / cdiv 11867 2c2 12263 ⌊cfl 13751 abscabs 15177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 |
This theorem is referenced by: dnibndlem2 35343 dnibndlem9 35350 dnibndlem12 35353 |
Copyright terms: Public domain | W3C validator |