![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnibndlem1 | Structured version Visualization version GIF version |
Description: Lemma for dnibnd 35875. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
Ref | Expression |
---|---|
dnibndlem1.1 | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
dnibndlem1.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dnibndlem1.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
dnibndlem1 | ⊢ (𝜑 → ((abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnibndlem1.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | dnibndlem1.1 | . . . . . 6 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
3 | 2 | dnival 35855 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (𝑇‘𝐵) = (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑇‘𝐵) = (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) |
5 | dnibndlem1.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
6 | 2 | dnival 35855 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
8 | 4, 7 | oveq12d 7423 | . . 3 ⊢ (𝜑 → ((𝑇‘𝐵) − (𝑇‘𝐴)) = ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) |
9 | 8 | fveq2d 6889 | . 2 ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) = (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) |
10 | 9 | breq1d 5151 | 1 ⊢ (𝜑 → ((abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 class class class wbr 5141 ↦ cmpt 5224 ‘cfv 6537 (class class class)co 7405 ℝcr 11111 1c1 11113 + caddc 11115 ≤ cle 11253 − cmin 11448 / cdiv 11875 2c2 12271 ⌊cfl 13761 abscabs 15187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6489 df-fun 6539 df-fv 6545 df-ov 7408 |
This theorem is referenced by: dnibndlem2 35863 dnibndlem9 35870 dnibndlem12 35873 |
Copyright terms: Public domain | W3C validator |