| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnibndlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for dnibnd 36452. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
| Ref | Expression |
|---|---|
| dnibndlem1.1 | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| dnibndlem1.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dnibndlem1.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| dnibndlem1 | ⊢ (𝜑 → ((abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnibndlem1.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 2 | dnibndlem1.1 | . . . . . 6 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 3 | 2 | dnival 36432 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (𝑇‘𝐵) = (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑇‘𝐵) = (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) |
| 5 | dnibndlem1.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 6 | 2 | dnival 36432 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
| 8 | 4, 7 | oveq12d 7387 | . . 3 ⊢ (𝜑 → ((𝑇‘𝐵) − (𝑇‘𝐴)) = ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) |
| 9 | 8 | fveq2d 6844 | . 2 ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) = (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) |
| 10 | 9 | breq1d 5112 | 1 ⊢ (𝜑 → ((abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 1c1 11045 + caddc 11047 ≤ cle 11185 − cmin 11381 / cdiv 11811 2c2 12217 ⌊cfl 13728 abscabs 15176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: dnibndlem2 36440 dnibndlem9 36447 dnibndlem12 36450 |
| Copyright terms: Public domain | W3C validator |