Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem1 Structured version   Visualization version   GIF version

Theorem dnibndlem1 34395
Description: Lemma for dnibnd 34408. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem1.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem1.2 (𝜑𝐴 ∈ ℝ)
dnibndlem1.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
dnibndlem1 (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem1
StepHypRef Expression
1 dnibndlem1.3 . . . . 5 (𝜑𝐵 ∈ ℝ)
2 dnibndlem1.1 . . . . . 6 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
32dnival 34388 . . . . 5 (𝐵 ∈ ℝ → (𝑇𝐵) = (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
41, 3syl 17 . . . 4 (𝜑 → (𝑇𝐵) = (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
5 dnibndlem1.2 . . . . 5 (𝜑𝐴 ∈ ℝ)
62dnival 34388 . . . . 5 (𝐴 ∈ ℝ → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
75, 6syl 17 . . . 4 (𝜑 → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
84, 7oveq12d 7231 . . 3 (𝜑 → ((𝑇𝐵) − (𝑇𝐴)) = ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
98fveq2d 6721 . 2 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) = (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))
109breq1d 5063 1 (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wcel 2110   class class class wbr 5053  cmpt 5135  cfv 6380  (class class class)co 7213  cr 10728  1c1 10730   + caddc 10732  cle 10868  cmin 11062   / cdiv 11489  2c2 11885  cfl 13365  abscabs 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388  df-ov 7216
This theorem is referenced by:  dnibndlem2  34396  dnibndlem9  34403  dnibndlem12  34406
  Copyright terms: Public domain W3C validator