Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem1 Structured version   Visualization version   GIF version

Theorem dnibndlem1 36439
Description: Lemma for dnibnd 36452. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem1.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem1.2 (𝜑𝐴 ∈ ℝ)
dnibndlem1.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
dnibndlem1 (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem1
StepHypRef Expression
1 dnibndlem1.3 . . . . 5 (𝜑𝐵 ∈ ℝ)
2 dnibndlem1.1 . . . . . 6 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
32dnival 36432 . . . . 5 (𝐵 ∈ ℝ → (𝑇𝐵) = (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
41, 3syl 17 . . . 4 (𝜑 → (𝑇𝐵) = (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
5 dnibndlem1.2 . . . . 5 (𝜑𝐴 ∈ ℝ)
62dnival 36432 . . . . 5 (𝐴 ∈ ℝ → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
75, 6syl 17 . . . 4 (𝜑 → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
84, 7oveq12d 7387 . . 3 (𝜑 → ((𝑇𝐵) − (𝑇𝐴)) = ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
98fveq2d 6844 . 2 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) = (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))
109breq1d 5112 1 (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cr 11043  1c1 11045   + caddc 11047  cle 11185  cmin 11381   / cdiv 11811  2c2 12217  cfl 13728  abscabs 15176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372
This theorem is referenced by:  dnibndlem2  36440  dnibndlem9  36447  dnibndlem12  36450
  Copyright terms: Public domain W3C validator