Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnival Structured version   Visualization version   GIF version

Theorem dnival 36459
Description: Value of the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypothesis
Ref Expression
dnival.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
Assertion
Ref Expression
dnival (𝐴 ∈ ℝ → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem dnival
StepHypRef Expression
1 fvoveq1 7410 . . . 4 (𝑥 = 𝐴 → (⌊‘(𝑥 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
2 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
31, 2oveq12d 7405 . . 3 (𝑥 = 𝐴 → ((⌊‘(𝑥 + (1 / 2))) − 𝑥) = ((⌊‘(𝐴 + (1 / 2))) − 𝐴))
43fveq2d 6862 . 2 (𝑥 = 𝐴 → (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
5 dnival.1 . 2 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
6 fvex 6871 . 2 (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ V
74, 5, 6fvmpt 6968 1 (𝐴 ∈ ℝ → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5188  cfv 6511  (class class class)co 7387  cr 11067  1c1 11069   + caddc 11071  cmin 11405   / cdiv 11835  2c2 12241  cfl 13752  abscabs 15200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390
This theorem is referenced by:  dnicld2  36461  dnizeq0  36463  dnizphlfeqhlf  36464  dnibndlem1  36466  knoppcnlem4  36484
  Copyright terms: Public domain W3C validator