Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnival Structured version   Visualization version   GIF version

Theorem dnival 36406
Description: Value of the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypothesis
Ref Expression
dnival.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
Assertion
Ref Expression
dnival (𝐴 ∈ ℝ → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem dnival
StepHypRef Expression
1 fvoveq1 7435 . . . 4 (𝑥 = 𝐴 → (⌊‘(𝑥 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
2 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
31, 2oveq12d 7430 . . 3 (𝑥 = 𝐴 → ((⌊‘(𝑥 + (1 / 2))) − 𝑥) = ((⌊‘(𝐴 + (1 / 2))) − 𝐴))
43fveq2d 6889 . 2 (𝑥 = 𝐴 → (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
5 dnival.1 . 2 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
6 fvex 6898 . 2 (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ V
74, 5, 6fvmpt 6995 1 (𝐴 ∈ ℝ → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cmpt 5205  cfv 6540  (class class class)co 7412  cr 11135  1c1 11137   + caddc 11139  cmin 11473   / cdiv 11901  2c2 12302  cfl 13811  abscabs 15254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6493  df-fun 6542  df-fv 6548  df-ov 7415
This theorem is referenced by:  dnicld2  36408  dnizeq0  36410  dnizphlfeqhlf  36411  dnibndlem1  36413  knoppcnlem4  36431
  Copyright terms: Public domain W3C validator