Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnival Structured version   Visualization version   GIF version

Theorem dnival 33044
Description: Value of the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypothesis
Ref Expression
dnival.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
Assertion
Ref Expression
dnival (𝐴 ∈ ℝ → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem dnival
StepHypRef Expression
1 fvoveq1 6945 . . . 4 (𝑥 = 𝐴 → (⌊‘(𝑥 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
2 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
31, 2oveq12d 6940 . . 3 (𝑥 = 𝐴 → ((⌊‘(𝑥 + (1 / 2))) − 𝑥) = ((⌊‘(𝐴 + (1 / 2))) − 𝐴))
43fveq2d 6450 . 2 (𝑥 = 𝐴 → (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
5 dnival.1 . 2 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
6 fvex 6459 . 2 (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ V
74, 5, 6fvmpt 6542 1 (𝐴 ∈ ℝ → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  cmpt 4965  cfv 6135  (class class class)co 6922  cr 10271  1c1 10273   + caddc 10275  cmin 10606   / cdiv 11032  2c2 11430  cfl 12910  abscabs 14381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fv 6143  df-ov 6925
This theorem is referenced by:  dnicld2  33046  dnizeq0  33048  dnizphlfeqhlf  33049  dnibndlem1  33051  knoppcnlem4  33069
  Copyright terms: Public domain W3C validator