Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnival Structured version   Visualization version   GIF version

Theorem dnival 36466
Description: Value of the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypothesis
Ref Expression
dnival.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
Assertion
Ref Expression
dnival (𝐴 ∈ ℝ → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem dnival
StepHypRef Expression
1 fvoveq1 7461 . . . 4 (𝑥 = 𝐴 → (⌊‘(𝑥 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
2 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
31, 2oveq12d 7456 . . 3 (𝑥 = 𝐴 → ((⌊‘(𝑥 + (1 / 2))) − 𝑥) = ((⌊‘(𝐴 + (1 / 2))) − 𝐴))
43fveq2d 6918 . 2 (𝑥 = 𝐴 → (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
5 dnival.1 . 2 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
6 fvex 6927 . 2 (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ V
74, 5, 6fvmpt 7023 1 (𝐴 ∈ ℝ → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cmpt 5234  cfv 6569  (class class class)co 7438  cr 11161  1c1 11163   + caddc 11165  cmin 11499   / cdiv 11927  2c2 12328  cfl 13836  abscabs 15279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441
This theorem is referenced by:  dnicld2  36468  dnizeq0  36470  dnizphlfeqhlf  36471  dnibndlem1  36473  knoppcnlem4  36491
  Copyright terms: Public domain W3C validator