![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnival | Structured version Visualization version GIF version |
Description: Value of the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
Ref | Expression |
---|---|
dnival.1 | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
Ref | Expression |
---|---|
dnival | ⊢ (𝐴 ∈ ℝ → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 7434 | . . . 4 ⊢ (𝑥 = 𝐴 → (⌊‘(𝑥 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2)))) | |
2 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
3 | 1, 2 | oveq12d 7429 | . . 3 ⊢ (𝑥 = 𝐴 → ((⌊‘(𝑥 + (1 / 2))) − 𝑥) = ((⌊‘(𝐴 + (1 / 2))) − 𝐴)) |
4 | 3 | fveq2d 6895 | . 2 ⊢ (𝑥 = 𝐴 → (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
5 | dnival.1 | . 2 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
6 | fvex 6904 | . 2 ⊢ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ V | |
7 | 4, 5, 6 | fvmpt 6998 | 1 ⊢ (𝐴 ∈ ℝ → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7411 ℝcr 11111 1c1 11113 + caddc 11115 − cmin 11448 / cdiv 11875 2c2 12271 ⌊cfl 13759 abscabs 15185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7414 |
This theorem is referenced by: dnicld2 35652 dnizeq0 35654 dnizphlfeqhlf 35655 dnibndlem1 35657 knoppcnlem4 35675 |
Copyright terms: Public domain | W3C validator |