Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem9 Structured version   Visualization version   GIF version

Theorem dnibndlem9 36469
Description: Lemma for dnibnd 36474. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem9.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem9.2 (𝜑𝐴 ∈ ℝ)
dnibndlem9.3 (𝜑𝐵 ∈ ℝ)
dnibndlem9.4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
Assertion
Ref Expression
dnibndlem9 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem9
StepHypRef Expression
1 dnibndlem9.3 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
21dnicld1 36455 . . . . . . 7 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
32recnd 11287 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ)
4 dnibndlem9.2 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
54dnicld1 36455 . . . . . . 7 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
65recnd 11287 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
73, 6subcld 11618 . . . . 5 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ)
87abscld 15472 . . . 4 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
9 halfre 12478 . . . . . . . 8 (1 / 2) ∈ ℝ
109a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℝ)
1110, 2jca 511 . . . . . 6 (𝜑 → ((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ))
12 resubcl 11571 . . . . . 6 (((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ) → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ)
1311, 12syl 17 . . . . 5 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ)
1410, 5jca 511 . . . . . 6 (𝜑 → ((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ))
15 resubcl 11571 . . . . . 6 (((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
1614, 15syl 17 . . . . 5 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
1713, 16readdcld 11288 . . . 4 (𝜑 → (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
181recnd 11287 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
191, 10readdcld 11288 . . . . . . . . . 10 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
20 reflcl 13833 . . . . . . . . . 10 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
2119, 20syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
2221recnd 11287 . . . . . . . 8 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
2310recnd 11287 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℂ)
2422, 23subcld 11618 . . . . . . 7 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ)
2518, 24subcld 11618 . . . . . 6 (𝜑 → (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) ∈ ℂ)
264, 10readdcld 11288 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
27 reflcl 13833 . . . . . . . . . 10 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2826, 27syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2928recnd 11287 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
3029, 23addcld 11278 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℂ)
314recnd 11287 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3230, 31subcld 11618 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴) ∈ ℂ)
3325, 32addcld 11278 . . . . 5 (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) ∈ ℂ)
3433abscld 15472 . . . 4 (𝜑 → (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))) ∈ ℝ)
354, 1dnibndlem6 36466 . . . 4 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))
3621, 10jca 511 . . . . . . . . 9 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ))
37 resubcl 11571 . . . . . . . . 9 (((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ)
3836, 37syl 17 . . . . . . . 8 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ)
391, 38jca 511 . . . . . . 7 (𝜑 → (𝐵 ∈ ℝ ∧ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ))
40 resubcl 11571 . . . . . . 7 ((𝐵 ∈ ℝ ∧ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ) → (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) ∈ ℝ)
4139, 40syl 17 . . . . . 6 (𝜑 → (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) ∈ ℝ)
4228, 10readdcld 11288 . . . . . . . 8 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ)
4342, 4jca 511 . . . . . . 7 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ ∧ 𝐴 ∈ ℝ))
44 resubcl 11571 . . . . . . 7 ((((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴) ∈ ℝ)
4543, 44syl 17 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴) ∈ ℝ)
461dnibndlem7 36467 . . . . . 6 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))))
474dnibndlem8 36468 . . . . . 6 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
4813, 16, 41, 45, 46, 47le2addd 11880 . . . . 5 (𝜑 → (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
4941, 45readdcld 11288 . . . . . . 7 (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) ∈ ℝ)
50 dnibndlem4 36464 . . . . . . . . 9 (𝐵 ∈ ℝ → 0 ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))))
511, 50syl 17 . . . . . . . 8 (𝜑 → 0 ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))))
52 0red 11262 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
53 dnibndlem5 36465 . . . . . . . . . 10 (𝐴 ∈ ℝ → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
544, 53syl 17 . . . . . . . . 9 (𝜑 → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
5552, 45, 54ltled 11407 . . . . . . . 8 (𝜑 → 0 ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
5641, 45, 51, 55addge0d 11837 . . . . . . 7 (𝜑 → 0 ≤ ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
5749, 56absidd 15458 . . . . . 6 (𝜑 → (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
5857eqcomd 2741 . . . . 5 (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))
5948, 58breqtrd 5174 . . . 4 (𝜑 → (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))
608, 17, 34, 35, 59letrd 11416 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))
61 dnibndlem9.1 . . . . 5 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
62 dnibndlem9.4 . . . . 5 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
6361, 4, 1, 62dnibndlem3 36463 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))
6463eqcomd 2741 . . 3 (𝜑 → (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))) = (abs‘(𝐵𝐴)))
6560, 64breqtrd 5174 . 2 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴)))
6661, 4, 1dnibndlem1 36461 . 2 (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)) ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴))))
6765, 66mpbird 257 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  2c2 12319  cfl 13827  abscabs 15270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272
This theorem is referenced by:  dnibndlem13  36473
  Copyright terms: Public domain W3C validator