Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem9 Structured version   Visualization version   GIF version

Theorem dnibndlem9 33436
Description: Lemma for dnibnd 33441. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem9.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem9.2 (𝜑𝐴 ∈ ℝ)
dnibndlem9.3 (𝜑𝐵 ∈ ℝ)
dnibndlem9.4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
Assertion
Ref Expression
dnibndlem9 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem9
StepHypRef Expression
1 dnibndlem9.3 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
21dnicld1 33422 . . . . . . 7 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
32recnd 10522 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ)
4 dnibndlem9.2 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
54dnicld1 33422 . . . . . . 7 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
65recnd 10522 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
73, 6subcld 10851 . . . . 5 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ)
87abscld 14634 . . . 4 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
9 halfre 11705 . . . . . . . 8 (1 / 2) ∈ ℝ
109a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℝ)
1110, 2jca 512 . . . . . 6 (𝜑 → ((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ))
12 resubcl 10804 . . . . . 6 (((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ) → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ)
1311, 12syl 17 . . . . 5 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ)
1410, 5jca 512 . . . . . 6 (𝜑 → ((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ))
15 resubcl 10804 . . . . . 6 (((1 / 2) ∈ ℝ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
1614, 15syl 17 . . . . 5 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
1713, 16readdcld 10523 . . . 4 (𝜑 → (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
181recnd 10522 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
191, 10readdcld 10523 . . . . . . . . . 10 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
20 reflcl 13020 . . . . . . . . . 10 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
2119, 20syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
2221recnd 10522 . . . . . . . 8 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
2310recnd 10522 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℂ)
2422, 23subcld 10851 . . . . . . 7 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ)
2518, 24subcld 10851 . . . . . 6 (𝜑 → (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) ∈ ℂ)
264, 10readdcld 10523 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
27 reflcl 13020 . . . . . . . . . 10 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2826, 27syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2928recnd 10522 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
3029, 23addcld 10513 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℂ)
314recnd 10522 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3230, 31subcld 10851 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴) ∈ ℂ)
3325, 32addcld 10513 . . . . 5 (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) ∈ ℂ)
3433abscld 14634 . . . 4 (𝜑 → (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))) ∈ ℝ)
354, 1dnibndlem6 33433 . . . 4 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))
3621, 10jca 512 . . . . . . . . 9 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ))
37 resubcl 10804 . . . . . . . . 9 (((⌊‘(𝐵 + (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ)
3836, 37syl 17 . . . . . . . 8 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ)
391, 38jca 512 . . . . . . 7 (𝜑 → (𝐵 ∈ ℝ ∧ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ))
40 resubcl 10804 . . . . . . 7 ((𝐵 ∈ ℝ ∧ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℝ) → (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) ∈ ℝ)
4139, 40syl 17 . . . . . 6 (𝜑 → (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) ∈ ℝ)
4228, 10readdcld 10523 . . . . . . . 8 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ)
4342, 4jca 512 . . . . . . 7 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ ∧ 𝐴 ∈ ℝ))
44 resubcl 10804 . . . . . . 7 ((((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴) ∈ ℝ)
4543, 44syl 17 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴) ∈ ℝ)
461dnibndlem7 33434 . . . . . 6 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))))
474dnibndlem8 33435 . . . . . 6 (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
4813, 16, 41, 45, 46, 47le2addd 11113 . . . . 5 (𝜑 → (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
4941, 45readdcld 10523 . . . . . . 7 (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) ∈ ℝ)
50 dnibndlem4 33431 . . . . . . . . 9 (𝐵 ∈ ℝ → 0 ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))))
511, 50syl 17 . . . . . . . 8 (𝜑 → 0 ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))))
52 0red 10497 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
53 dnibndlem5 33432 . . . . . . . . . 10 (𝐴 ∈ ℝ → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
544, 53syl 17 . . . . . . . . 9 (𝜑 → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
5552, 45, 54ltled 10641 . . . . . . . 8 (𝜑 → 0 ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
5641, 45, 51, 55addge0d 11070 . . . . . . 7 (𝜑 → 0 ≤ ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
5749, 56absidd 14620 . . . . . 6 (𝜑 → (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
5857eqcomd 2803 . . . . 5 (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))
5948, 58breqtrd 4994 . . . 4 (𝜑 → (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))
608, 17, 34, 35, 59letrd 10650 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))
61 dnibndlem9.1 . . . . 5 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
62 dnibndlem9.4 . . . . 5 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
6361, 4, 1, 62dnibndlem3 33430 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))
6463eqcomd 2803 . . 3 (𝜑 → (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))) = (abs‘(𝐵𝐴)))
6560, 64breqtrd 4994 . 2 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴)))
6661, 4, 1dnibndlem1 33428 . 2 (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)) ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴))))
6765, 66mpbird 258 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1525  wcel 2083   class class class wbr 4968  cmpt 5047  cfv 6232  (class class class)co 7023  cr 10389  0cc0 10390  1c1 10391   + caddc 10393   < clt 10528  cle 10529  cmin 10723   / cdiv 11151  2c2 11546  cfl 13014  abscabs 14431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-sup 8759  df-inf 8760  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-n0 11752  df-z 11836  df-uz 12098  df-rp 12244  df-fl 13016  df-seq 13224  df-exp 13284  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433
This theorem is referenced by:  dnibndlem13  33440
  Copyright terms: Public domain W3C validator