Proof of Theorem dnibndlem9
Step | Hyp | Ref
| Expression |
1 | | dnibndlem9.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℝ) |
2 | 1 | dnicld1 34652 |
. . . . . . 7
⊢ (𝜑 →
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ) |
3 | 2 | recnd 11003 |
. . . . . 6
⊢ (𝜑 →
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ) |
4 | | dnibndlem9.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | 4 | dnicld1 34652 |
. . . . . . 7
⊢ (𝜑 →
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) |
6 | 5 | recnd 11003 |
. . . . . 6
⊢ (𝜑 →
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ) |
7 | 3, 6 | subcld 11332 |
. . . . 5
⊢ (𝜑 →
((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈
ℂ) |
8 | 7 | abscld 15148 |
. . . 4
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈
ℝ) |
9 | | halfre 12187 |
. . . . . . . 8
⊢ (1 / 2)
∈ ℝ |
10 | 9 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
11 | 10, 2 | jca 512 |
. . . . . 6
⊢ (𝜑 → ((1 / 2) ∈ ℝ
∧ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)) |
12 | | resubcl 11285 |
. . . . . 6
⊢ (((1 / 2)
∈ ℝ ∧ (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ) → ((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ (𝜑 → ((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ∈ ℝ) |
14 | 10, 5 | jca 512 |
. . . . . 6
⊢ (𝜑 → ((1 / 2) ∈ ℝ
∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)) |
15 | | resubcl 11285 |
. . . . . 6
⊢ (((1 / 2)
∈ ℝ ∧ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) → ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ) |
16 | 14, 15 | syl 17 |
. . . . 5
⊢ (𝜑 → ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ) |
17 | 13, 16 | readdcld 11004 |
. . . 4
⊢ (𝜑 → (((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ) |
18 | 1 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) |
19 | 1, 10 | readdcld 11004 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ) |
20 | | reflcl 13516 |
. . . . . . . . . 10
⊢ ((𝐵 + (1 / 2)) ∈ ℝ
→ (⌊‘(𝐵 +
(1 / 2))) ∈ ℝ) |
21 | 19, 20 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈
ℝ) |
22 | 21 | recnd 11003 |
. . . . . . . 8
⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈
ℂ) |
23 | 10 | recnd 11003 |
. . . . . . . 8
⊢ (𝜑 → (1 / 2) ∈
ℂ) |
24 | 22, 23 | subcld 11332 |
. . . . . . 7
⊢ (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))
∈ ℂ) |
25 | 18, 24 | subcld 11332 |
. . . . . 6
⊢ (𝜑 → (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) ∈
ℂ) |
26 | 4, 10 | readdcld 11004 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ) |
27 | | reflcl 13516 |
. . . . . . . . . 10
⊢ ((𝐴 + (1 / 2)) ∈ ℝ
→ (⌊‘(𝐴 +
(1 / 2))) ∈ ℝ) |
28 | 26, 27 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈
ℝ) |
29 | 28 | recnd 11003 |
. . . . . . . 8
⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈
ℂ) |
30 | 29, 23 | addcld 10994 |
. . . . . . 7
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈
ℂ) |
31 | 4 | recnd 11003 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
32 | 30, 31 | subcld 11332 |
. . . . . 6
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) −
𝐴) ∈
ℂ) |
33 | 25, 32 | addcld 10994 |
. . . . 5
⊢ (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴))
∈ ℂ) |
34 | 33 | abscld 15148 |
. . . 4
⊢ (𝜑 → (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴))) ∈ ℝ) |
35 | 4, 1 | dnibndlem6 34663 |
. . . 4
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) |
36 | 21, 10 | jca 512 |
. . . . . . . . 9
⊢ (𝜑 → ((⌊‘(𝐵 + (1 / 2))) ∈ ℝ
∧ (1 / 2) ∈ ℝ)) |
37 | | resubcl 11285 |
. . . . . . . . 9
⊢
(((⌊‘(𝐵
+ (1 / 2))) ∈ ℝ ∧ (1 / 2) ∈ ℝ) →
((⌊‘(𝐵 + (1 /
2))) − (1 / 2)) ∈ ℝ) |
38 | 36, 37 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))
∈ ℝ) |
39 | 1, 38 | jca 512 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ∈ ℝ ∧ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))
∈ ℝ)) |
40 | | resubcl 11285 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧
((⌊‘(𝐵 + (1 /
2))) − (1 / 2)) ∈ ℝ) → (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) ∈
ℝ) |
41 | 39, 40 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) ∈
ℝ) |
42 | 28, 10 | readdcld 11004 |
. . . . . . . 8
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈
ℝ) |
43 | 42, 4 | jca 512 |
. . . . . . 7
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) ∈
ℝ ∧ 𝐴 ∈
ℝ)) |
44 | | resubcl 11285 |
. . . . . . 7
⊢
((((⌊‘(𝐴
+ (1 / 2))) + (1 / 2)) ∈ ℝ ∧ 𝐴 ∈ ℝ) →
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴)
∈ ℝ) |
45 | 43, 44 | syl 17 |
. . . . . 6
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) −
𝐴) ∈
ℝ) |
46 | 1 | dnibndlem7 34664 |
. . . . . 6
⊢ (𝜑 → ((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 /
2)))) |
47 | 4 | dnibndlem8 34665 |
. . . . . 6
⊢ (𝜑 → ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) |
48 | 13, 16, 41, 45, 46, 47 | le2addd 11594 |
. . . . 5
⊢ (𝜑 → (((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴))) |
49 | 41, 45 | readdcld 11004 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴))
∈ ℝ) |
50 | | dnibndlem4 34661 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ → 0 ≤
(𝐵 −
((⌊‘(𝐵 + (1 /
2))) − (1 / 2)))) |
51 | 1, 50 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 /
2)))) |
52 | | 0red 10978 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℝ) |
53 | | dnibndlem5 34662 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → 0 <
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴)) |
54 | 4, 53 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 0 <
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴)) |
55 | 52, 45, 54 | ltled 11123 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴)) |
56 | 41, 45, 51, 55 | addge0d 11551 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴))) |
57 | 49, 56 | absidd 15134 |
. . . . . 6
⊢ (𝜑 → (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴))) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴))) |
58 | 57 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴))
= (abs‘((𝐵 −
((⌊‘(𝐵 + (1 /
2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))) |
59 | 48, 58 | breqtrd 5100 |
. . . 4
⊢ (𝜑 → (((1 / 2) −
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) −
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴)))) |
60 | 8, 17, 34, 35, 59 | letrd 11132 |
. . 3
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴)))) |
61 | | dnibndlem9.1 |
. . . . 5
⊢ 𝑇 = (𝑥 ∈ ℝ ↦
(abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
62 | | dnibndlem9.4 |
. . . . 5
⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) =
((⌊‘(𝐴 + (1 /
2))) + 1)) |
63 | 61, 4, 1, 62 | dnibndlem3 34660 |
. . . 4
⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴)))) |
64 | 63 | eqcomd 2744 |
. . 3
⊢ (𝜑 → (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴))) = (abs‘(𝐵 − 𝐴))) |
65 | 60, 64 | breqtrd 5100 |
. 2
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵 − 𝐴))) |
66 | 61, 4, 1 | dnibndlem1 34658 |
. 2
⊢ (𝜑 → ((abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴)) ↔
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵 − 𝐴)))) |
67 | 65, 66 | mpbird 256 |
1
⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |