Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibnd Structured version   Visualization version   GIF version

Theorem dnibnd 36473
Description: The "distance to nearest integer" function is 1-Lipschitz continuous, i.e., is a short map. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibnd.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibnd.2 (𝜑𝐴 ∈ ℝ)
dnibnd.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
dnibnd (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibnd
StepHypRef Expression
1 dnibnd.1 . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 dnibnd.2 . . . 4 (𝜑𝐴 ∈ ℝ)
32adantr 480 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
4 dnibnd.3 . . . 4 (𝜑𝐵 ∈ ℝ)
54adantr 480 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
6 simpr 484 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))))
71, 3, 5, 6dnibndlem13 36472 . 2 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
81, 4dnicld2 36455 . . . . . 6 (𝜑 → (𝑇𝐵) ∈ ℝ)
98recnd 11286 . . . . 5 (𝜑 → (𝑇𝐵) ∈ ℂ)
101, 2dnicld2 36455 . . . . . 6 (𝜑 → (𝑇𝐴) ∈ ℝ)
1110recnd 11286 . . . . 5 (𝜑 → (𝑇𝐴) ∈ ℂ)
129, 11abssubd 15488 . . . 4 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) = (abs‘((𝑇𝐴) − (𝑇𝐵))))
1312adantr 480 . . 3 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) = (abs‘((𝑇𝐴) − (𝑇𝐵))))
144adantr 480 . . . . 5 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → 𝐵 ∈ ℝ)
152adantr 480 . . . . 5 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → 𝐴 ∈ ℝ)
16 simpr 484 . . . . 5 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2))))
171, 14, 15, 16dnibndlem13 36472 . . . 4 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇𝐴) − (𝑇𝐵))) ≤ (abs‘(𝐴𝐵)))
182recnd 11286 . . . . . 6 (𝜑𝐴 ∈ ℂ)
194recnd 11286 . . . . . 6 (𝜑𝐵 ∈ ℂ)
2018, 19abssubd 15488 . . . . 5 (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
2120adantr 480 . . . 4 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
2217, 21breqtrd 5173 . . 3 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇𝐴) − (𝑇𝐵))) ≤ (abs‘(𝐵𝐴)))
2313, 22eqbrtrd 5169 . 2 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
24 halfre 12477 . . . . . 6 (1 / 2) ∈ ℝ
2524a1i 11 . . . . 5 (𝜑 → (1 / 2) ∈ ℝ)
262, 25readdcld 11287 . . . 4 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
27 reflcl 13832 . . . 4 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2826, 27syl 17 . . 3 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
294, 25readdcld 11287 . . . 4 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
30 reflcl 13832 . . . 4 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
3129, 30syl 17 . . 3 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
3228, 31letrid 11410 . 2 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))))
337, 23, 32mpjaodan 960 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105   class class class wbr 5147  cmpt 5230  cfv 6562  (class class class)co 7430  cr 11151  1c1 11153   + caddc 11155  cle 11293  cmin 11489   / cdiv 11917  2c2 12318  cfl 13826  abscabs 15269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fl 13828  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271
This theorem is referenced by:  dnicn  36474  knoppndvlem11  36504
  Copyright terms: Public domain W3C validator