![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnibnd | Structured version Visualization version GIF version |
Description: The "distance to nearest integer" function is 1-Lipschitz continuous, i.e., is a short map. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
Ref | Expression |
---|---|
dnibnd.1 | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
dnibnd.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dnibnd.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
dnibnd | ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnibnd.1 | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
2 | dnibnd.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 2 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ) |
4 | dnibnd.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | 4 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ) |
6 | simpr 479 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) | |
7 | 1, 3, 5, 6 | dnibndlem13 33008 | . 2 ⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
8 | 1, 4 | dnicld2 32991 | . . . . . 6 ⊢ (𝜑 → (𝑇‘𝐵) ∈ ℝ) |
9 | 8 | recnd 10392 | . . . . 5 ⊢ (𝜑 → (𝑇‘𝐵) ∈ ℂ) |
10 | 1, 2 | dnicld2 32991 | . . . . . 6 ⊢ (𝜑 → (𝑇‘𝐴) ∈ ℝ) |
11 | 10 | recnd 10392 | . . . . 5 ⊢ (𝜑 → (𝑇‘𝐴) ∈ ℂ) |
12 | 9, 11 | abssubd 14576 | . . . 4 ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) = (abs‘((𝑇‘𝐴) − (𝑇‘𝐵)))) |
13 | 12 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) = (abs‘((𝑇‘𝐴) − (𝑇‘𝐵)))) |
14 | 4 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → 𝐵 ∈ ℝ) |
15 | 2 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → 𝐴 ∈ ℝ) |
16 | simpr 479 | . . . . 5 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) | |
17 | 1, 14, 15, 16 | dnibndlem13 33008 | . . . 4 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇‘𝐴) − (𝑇‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
18 | 2 | recnd 10392 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
19 | 4 | recnd 10392 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
20 | 18, 19 | abssubd 14576 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
21 | 20 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
22 | 17, 21 | breqtrd 4901 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇‘𝐴) − (𝑇‘𝐵))) ≤ (abs‘(𝐵 − 𝐴))) |
23 | 13, 22 | eqbrtrd 4897 | . 2 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
24 | halfre 11579 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
26 | 2, 25 | readdcld 10393 | . . . 4 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ) |
27 | reflcl 12899 | . . . 4 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) | |
28 | 26, 27 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) |
29 | 4, 25 | readdcld 10393 | . . . 4 ⊢ (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ) |
30 | reflcl 12899 | . . . 4 ⊢ ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ) | |
31 | 29, 30 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ) |
32 | 28, 31 | letrid 10515 | . 2 ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2))))) |
33 | 7, 23, 32 | mpjaodan 986 | 1 ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 class class class wbr 4875 ↦ cmpt 4954 ‘cfv 6127 (class class class)co 6910 ℝcr 10258 1c1 10260 + caddc 10262 ≤ cle 10399 − cmin 10592 / cdiv 11016 2c2 11413 ⌊cfl 12893 abscabs 14358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-sup 8623 df-inf 8624 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-n0 11626 df-z 11712 df-uz 11976 df-rp 12120 df-fl 12895 df-seq 13103 df-exp 13162 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 |
This theorem is referenced by: dnicn 33010 knoppndvlem11 33040 |
Copyright terms: Public domain | W3C validator |