Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibnd Structured version   Visualization version   GIF version

Theorem dnibnd 33009
Description: The "distance to nearest integer" function is 1-Lipschitz continuous, i.e., is a short map. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibnd.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibnd.2 (𝜑𝐴 ∈ ℝ)
dnibnd.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
dnibnd (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibnd
StepHypRef Expression
1 dnibnd.1 . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 dnibnd.2 . . . 4 (𝜑𝐴 ∈ ℝ)
32adantr 474 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
4 dnibnd.3 . . . 4 (𝜑𝐵 ∈ ℝ)
54adantr 474 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
6 simpr 479 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))))
71, 3, 5, 6dnibndlem13 33008 . 2 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
81, 4dnicld2 32991 . . . . . 6 (𝜑 → (𝑇𝐵) ∈ ℝ)
98recnd 10392 . . . . 5 (𝜑 → (𝑇𝐵) ∈ ℂ)
101, 2dnicld2 32991 . . . . . 6 (𝜑 → (𝑇𝐴) ∈ ℝ)
1110recnd 10392 . . . . 5 (𝜑 → (𝑇𝐴) ∈ ℂ)
129, 11abssubd 14576 . . . 4 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) = (abs‘((𝑇𝐴) − (𝑇𝐵))))
1312adantr 474 . . 3 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) = (abs‘((𝑇𝐴) − (𝑇𝐵))))
144adantr 474 . . . . 5 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → 𝐵 ∈ ℝ)
152adantr 474 . . . . 5 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → 𝐴 ∈ ℝ)
16 simpr 479 . . . . 5 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2))))
171, 14, 15, 16dnibndlem13 33008 . . . 4 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇𝐴) − (𝑇𝐵))) ≤ (abs‘(𝐴𝐵)))
182recnd 10392 . . . . . 6 (𝜑𝐴 ∈ ℂ)
194recnd 10392 . . . . . 6 (𝜑𝐵 ∈ ℂ)
2018, 19abssubd 14576 . . . . 5 (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
2120adantr 474 . . . 4 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
2217, 21breqtrd 4901 . . 3 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇𝐴) − (𝑇𝐵))) ≤ (abs‘(𝐵𝐴)))
2313, 22eqbrtrd 4897 . 2 ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
24 halfre 11579 . . . . . 6 (1 / 2) ∈ ℝ
2524a1i 11 . . . . 5 (𝜑 → (1 / 2) ∈ ℝ)
262, 25readdcld 10393 . . . 4 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
27 reflcl 12899 . . . 4 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2826, 27syl 17 . . 3 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
294, 25readdcld 10393 . . . 4 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
30 reflcl 12899 . . . 4 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
3129, 30syl 17 . . 3 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
3228, 31letrid 10515 . 2 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))))
337, 23, 32mpjaodan 986 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164   class class class wbr 4875  cmpt 4954  cfv 6127  (class class class)co 6910  cr 10258  1c1 10260   + caddc 10262  cle 10399  cmin 10592   / cdiv 11016  2c2 11413  cfl 12893  abscabs 14358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-fl 12895  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360
This theorem is referenced by:  dnicn  33010  knoppndvlem11  33040
  Copyright terms: Public domain W3C validator