| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnibnd | Structured version Visualization version GIF version | ||
| Description: The "distance to nearest integer" function is 1-Lipschitz continuous, i.e., is a short map. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
| Ref | Expression |
|---|---|
| dnibnd.1 | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| dnibnd.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dnibnd.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| dnibnd | ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnibnd.1 | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 2 | dnibnd.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ) |
| 4 | dnibnd.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ) |
| 6 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) | |
| 7 | 1, 3, 5, 6 | dnibndlem13 36474 | . 2 ⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
| 8 | 1, 4 | dnicld2 36457 | . . . . . 6 ⊢ (𝜑 → (𝑇‘𝐵) ∈ ℝ) |
| 9 | 8 | recnd 11143 | . . . . 5 ⊢ (𝜑 → (𝑇‘𝐵) ∈ ℂ) |
| 10 | 1, 2 | dnicld2 36457 | . . . . . 6 ⊢ (𝜑 → (𝑇‘𝐴) ∈ ℝ) |
| 11 | 10 | recnd 11143 | . . . . 5 ⊢ (𝜑 → (𝑇‘𝐴) ∈ ℂ) |
| 12 | 9, 11 | abssubd 15363 | . . . 4 ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) = (abs‘((𝑇‘𝐴) − (𝑇‘𝐵)))) |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) = (abs‘((𝑇‘𝐴) − (𝑇‘𝐵)))) |
| 14 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → 𝐵 ∈ ℝ) |
| 15 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → 𝐴 ∈ ℝ) |
| 16 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) | |
| 17 | 1, 14, 15, 16 | dnibndlem13 36474 | . . . 4 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇‘𝐴) − (𝑇‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
| 18 | 2 | recnd 11143 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 19 | 4 | recnd 11143 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 20 | 18, 19 | abssubd 15363 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
| 22 | 17, 21 | breqtrd 5118 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇‘𝐴) − (𝑇‘𝐵))) ≤ (abs‘(𝐵 − 𝐴))) |
| 23 | 13, 22 | eqbrtrd 5114 | . 2 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
| 24 | halfre 12337 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
| 25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
| 26 | 2, 25 | readdcld 11144 | . . . 4 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ) |
| 27 | reflcl 13700 | . . . 4 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) | |
| 28 | 26, 27 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) |
| 29 | 4, 25 | readdcld 11144 | . . . 4 ⊢ (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ) |
| 30 | reflcl 13700 | . . . 4 ⊢ ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ) | |
| 31 | 29, 30 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ) |
| 32 | 28, 31 | letrid 11268 | . 2 ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2))))) |
| 33 | 7, 23, 32 | mpjaodan 960 | 1 ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 1c1 11010 + caddc 11012 ≤ cle 11150 − cmin 11347 / cdiv 11777 2c2 12183 ⌊cfl 13694 abscabs 15141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fl 13696 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 |
| This theorem is referenced by: dnicn 36476 knoppndvlem11 36506 |
| Copyright terms: Public domain | W3C validator |