| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnibnd | Structured version Visualization version GIF version | ||
| Description: The "distance to nearest integer" function is 1-Lipschitz continuous, i.e., is a short map. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
| Ref | Expression |
|---|---|
| dnibnd.1 | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| dnibnd.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dnibnd.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| dnibnd | ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnibnd.1 | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 2 | dnibnd.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ) |
| 4 | dnibnd.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ) |
| 6 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) | |
| 7 | 1, 3, 5, 6 | dnibndlem13 36534 | . 2 ⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
| 8 | 1, 4 | dnicld2 36517 | . . . . . 6 ⊢ (𝜑 → (𝑇‘𝐵) ∈ ℝ) |
| 9 | 8 | recnd 11140 | . . . . 5 ⊢ (𝜑 → (𝑇‘𝐵) ∈ ℂ) |
| 10 | 1, 2 | dnicld2 36517 | . . . . . 6 ⊢ (𝜑 → (𝑇‘𝐴) ∈ ℝ) |
| 11 | 10 | recnd 11140 | . . . . 5 ⊢ (𝜑 → (𝑇‘𝐴) ∈ ℂ) |
| 12 | 9, 11 | abssubd 15363 | . . . 4 ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) = (abs‘((𝑇‘𝐴) − (𝑇‘𝐵)))) |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) = (abs‘((𝑇‘𝐴) − (𝑇‘𝐵)))) |
| 14 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → 𝐵 ∈ ℝ) |
| 15 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → 𝐴 ∈ ℝ) |
| 16 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) | |
| 17 | 1, 14, 15, 16 | dnibndlem13 36534 | . . . 4 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇‘𝐴) − (𝑇‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
| 18 | 2 | recnd 11140 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 19 | 4 | recnd 11140 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 20 | 18, 19 | abssubd 15363 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
| 21 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
| 22 | 17, 21 | breqtrd 5115 | . . 3 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇‘𝐴) − (𝑇‘𝐵))) ≤ (abs‘(𝐵 − 𝐴))) |
| 23 | 13, 22 | eqbrtrd 5111 | . 2 ⊢ ((𝜑 ∧ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2)))) → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
| 24 | halfre 12334 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
| 25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
| 26 | 2, 25 | readdcld 11141 | . . . 4 ⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ) |
| 27 | reflcl 13700 | . . . 4 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) | |
| 28 | 26, 27 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) |
| 29 | 4, 25 | readdcld 11141 | . . . 4 ⊢ (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ) |
| 30 | reflcl 13700 | . . . 4 ⊢ ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ) | |
| 31 | 29, 30 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ) |
| 32 | 28, 31 | letrid 11265 | . 2 ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐵 + (1 / 2))) ≤ (⌊‘(𝐴 + (1 / 2))))) |
| 33 | 7, 23, 32 | mpjaodan 960 | 1 ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 1c1 11007 + caddc 11009 ≤ cle 11147 − cmin 11344 / cdiv 11774 2c2 12180 ⌊cfl 13694 abscabs 15141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fl 13696 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 |
| This theorem is referenced by: dnicn 36536 knoppndvlem11 36566 |
| Copyright terms: Public domain | W3C validator |