Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem2 Structured version   Visualization version   GIF version

Theorem dnibndlem2 34586
Description: Lemma for dnibnd 34598. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem2.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem2.2 (𝜑𝐴 ∈ ℝ)
dnibndlem2.3 (𝜑𝐵 ∈ ℝ)
dnibndlem2.4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
Assertion
Ref Expression
dnibndlem2 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem2
StepHypRef Expression
1 dnibndlem2.3 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
2 halfre 12117 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
32a1i 11 . . . . . . . . . . . 12 (𝜑 → (1 / 2) ∈ ℝ)
41, 3jca 511 . . . . . . . . . . 11 (𝜑 → (𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
5 readdcl 10885 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐵 + (1 / 2)) ∈ ℝ)
64, 5syl 17 . . . . . . . . . 10 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
7 reflcl 13444 . . . . . . . . . 10 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
86, 7syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
98recnd 10934 . . . . . . . 8 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
101recnd 10934 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
119, 10subcld 11262 . . . . . . 7 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈ ℂ)
1211abscld 15076 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
1312recnd 10934 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ)
14 dnibndlem2.4 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
1514, 9eqeltrrd 2840 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
16 dnibndlem2.2 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1716recnd 10934 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1815, 17subcld 11262 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ)
1918abscld 15076 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
2019recnd 10934 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
2113, 20subcld 11262 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ)
2221abscld 15076 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
2311, 18subcld 11262 . . . 4 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
2423abscld 15076 . . 3 (𝜑 → (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
2510, 17subcld 11262 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℂ)
2625abscld 15076 . . 3 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
2711, 18abs2difabsd 15099 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
289, 17, 10nnncan1d 11296 . . . . . . 7 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (𝐵𝐴))
2928eqcomd 2744 . . . . . 6 (𝜑 → (𝐵𝐴) = (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
3029fveq2d 6760 . . . . 5 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3114oveq1d 7270 . . . . . . 7 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐴) = ((⌊‘(𝐴 + (1 / 2))) − 𝐴))
3231oveq1d 7270 . . . . . 6 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
3332fveq2d 6760 . . . . 5 (𝜑 → (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))) = (abs‘(((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3418, 11abssubd 15093 . . . . 5 (𝜑 → (abs‘(((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
3530, 33, 343eqtrd 2782 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
3626leidd 11471 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) ≤ (abs‘(𝐵𝐴)))
3735, 36eqbrtrrd 5094 . . 3 (𝜑 → (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (abs‘(𝐵𝐴)))
3822, 24, 26, 27, 37letrd 11062 . 2 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴)))
39 dnibndlem2.1 . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
4039, 16, 1dnibndlem1 34585 . 2 (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)) ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴))))
4138, 40mpbird 256 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  1c1 10803   + caddc 10805  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  cfl 13438  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  dnibndlem13  34597
  Copyright terms: Public domain W3C validator