Proof of Theorem dnibndlem2
Step | Hyp | Ref
| Expression |
1 | | dnibndlem2.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℝ) |
2 | | halfre 12187 |
. . . . . . . . . . . . 13
⊢ (1 / 2)
∈ ℝ |
3 | 2 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
4 | 1, 3 | jca 512 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 ∈ ℝ ∧ (1 / 2) ∈
ℝ)) |
5 | | readdcl 10954 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℝ ∧ (1 / 2)
∈ ℝ) → (𝐵 +
(1 / 2)) ∈ ℝ) |
6 | 4, 5 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ) |
7 | | reflcl 13516 |
. . . . . . . . . 10
⊢ ((𝐵 + (1 / 2)) ∈ ℝ
→ (⌊‘(𝐵 +
(1 / 2))) ∈ ℝ) |
8 | 6, 7 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈
ℝ) |
9 | 8 | recnd 11003 |
. . . . . . . 8
⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈
ℂ) |
10 | 1 | recnd 11003 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℂ) |
11 | 9, 10 | subcld 11332 |
. . . . . . 7
⊢ (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈
ℂ) |
12 | 11 | abscld 15148 |
. . . . . 6
⊢ (𝜑 →
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ) |
13 | 12 | recnd 11003 |
. . . . 5
⊢ (𝜑 →
(abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ) |
14 | | dnibndlem2.4 |
. . . . . . . . 9
⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) =
(⌊‘(𝐴 + (1 /
2)))) |
15 | 14, 9 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈
ℂ) |
16 | | dnibndlem2.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
17 | 16 | recnd 11003 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
18 | 15, 17 | subcld 11332 |
. . . . . . 7
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈
ℂ) |
19 | 18 | abscld 15148 |
. . . . . 6
⊢ (𝜑 →
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) |
20 | 19 | recnd 11003 |
. . . . 5
⊢ (𝜑 →
(abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ) |
21 | 13, 20 | subcld 11332 |
. . . 4
⊢ (𝜑 →
((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈
ℂ) |
22 | 21 | abscld 15148 |
. . 3
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈
ℝ) |
23 | 11, 18 | subcld 11332 |
. . . 4
⊢ (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈
ℂ) |
24 | 23 | abscld 15148 |
. . 3
⊢ (𝜑 →
(abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ) |
25 | 10, 17 | subcld 11332 |
. . . 4
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℂ) |
26 | 25 | abscld 15148 |
. . 3
⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) ∈ ℝ) |
27 | 11, 18 | abs2difabsd 15171 |
. . 3
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤
(abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) |
28 | 9, 17, 10 | nnncan1d 11366 |
. . . . . . 7
⊢ (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (𝐵 − 𝐴)) |
29 | 28 | eqcomd 2744 |
. . . . . 6
⊢ (𝜑 → (𝐵 − 𝐴) = (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))) |
30 | 29 | fveq2d 6778 |
. . . . 5
⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) |
31 | 14 | oveq1d 7290 |
. . . . . . 7
⊢ (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐴) = ((⌊‘(𝐴 + (1 / 2))) − 𝐴)) |
32 | 31 | oveq1d 7290 |
. . . . . 6
⊢ (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))) |
33 | 32 | fveq2d 6778 |
. . . . 5
⊢ (𝜑 →
(abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))) = (abs‘(((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)))) |
34 | 18, 11 | abssubd 15165 |
. . . . 5
⊢ (𝜑 →
(abs‘(((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) |
35 | 30, 33, 34 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) |
36 | 26 | leidd 11541 |
. . . 4
⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) ≤ (abs‘(𝐵 − 𝐴))) |
37 | 35, 36 | eqbrtrrd 5098 |
. . 3
⊢ (𝜑 →
(abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
38 | 22, 24, 26, 27, 37 | letrd 11132 |
. 2
⊢ (𝜑 →
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵 − 𝐴))) |
39 | | dnibndlem2.1 |
. . 3
⊢ 𝑇 = (𝑥 ∈ ℝ ↦
(abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
40 | 39, 16, 1 | dnibndlem1 34658 |
. 2
⊢ (𝜑 → ((abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴)) ↔
(abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵 − 𝐴)))) |
41 | 38, 40 | mpbird 256 |
1
⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |