Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem2 Structured version   Visualization version   GIF version

Theorem dnibndlem2 33822
Description: Lemma for dnibnd 33834. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem2.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem2.2 (𝜑𝐴 ∈ ℝ)
dnibndlem2.3 (𝜑𝐵 ∈ ℝ)
dnibndlem2.4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
Assertion
Ref Expression
dnibndlem2 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem2
StepHypRef Expression
1 dnibndlem2.3 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
2 halfre 11854 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
32a1i 11 . . . . . . . . . . . 12 (𝜑 → (1 / 2) ∈ ℝ)
41, 3jca 514 . . . . . . . . . . 11 (𝜑 → (𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
5 readdcl 10623 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐵 + (1 / 2)) ∈ ℝ)
64, 5syl 17 . . . . . . . . . 10 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
7 reflcl 13169 . . . . . . . . . 10 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
86, 7syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
98recnd 10672 . . . . . . . 8 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
101recnd 10672 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
119, 10subcld 11000 . . . . . . 7 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈ ℂ)
1211abscld 14799 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
1312recnd 10672 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ)
14 dnibndlem2.4 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
1514, 9eqeltrrd 2917 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
16 dnibndlem2.2 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1716recnd 10672 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1815, 17subcld 11000 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ)
1918abscld 14799 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
2019recnd 10672 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
2113, 20subcld 11000 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ)
2221abscld 14799 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
2311, 18subcld 11000 . . . 4 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
2423abscld 14799 . . 3 (𝜑 → (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
2510, 17subcld 11000 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℂ)
2625abscld 14799 . . 3 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
2711, 18abs2difabsd 14822 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
289, 17, 10nnncan1d 11034 . . . . . . 7 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (𝐵𝐴))
2928eqcomd 2830 . . . . . 6 (𝜑 → (𝐵𝐴) = (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
3029fveq2d 6677 . . . . 5 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3114oveq1d 7174 . . . . . . 7 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐴) = ((⌊‘(𝐴 + (1 / 2))) − 𝐴))
3231oveq1d 7174 . . . . . 6 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
3332fveq2d 6677 . . . . 5 (𝜑 → (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))) = (abs‘(((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3418, 11abssubd 14816 . . . . 5 (𝜑 → (abs‘(((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
3530, 33, 343eqtrd 2863 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
3626leidd 11209 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) ≤ (abs‘(𝐵𝐴)))
3735, 36eqbrtrrd 5093 . . 3 (𝜑 → (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (abs‘(𝐵𝐴)))
3822, 24, 26, 27, 37letrd 10800 . 2 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴)))
39 dnibndlem2.1 . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
4039, 16, 1dnibndlem1 33821 . 2 (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)) ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴))))
4138, 40mpbird 259 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113   class class class wbr 5069  cmpt 5149  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  1c1 10541   + caddc 10543  cle 10679  cmin 10873   / cdiv 11300  2c2 11695  cfl 13163  abscabs 14596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598
This theorem is referenced by:  dnibndlem13  33833
  Copyright terms: Public domain W3C validator