Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem2 Structured version   Visualization version   GIF version

Theorem dnibndlem2 36474
Description: Lemma for dnibnd 36486. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem2.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem2.2 (𝜑𝐴 ∈ ℝ)
dnibndlem2.3 (𝜑𝐵 ∈ ℝ)
dnibndlem2.4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
Assertion
Ref Expression
dnibndlem2 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem2
StepHypRef Expression
1 dnibndlem2.3 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
2 halfre 12402 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
32a1i 11 . . . . . . . . . . . 12 (𝜑 → (1 / 2) ∈ ℝ)
41, 3jca 511 . . . . . . . . . . 11 (𝜑 → (𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
5 readdcl 11158 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐵 + (1 / 2)) ∈ ℝ)
64, 5syl 17 . . . . . . . . . 10 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
7 reflcl 13765 . . . . . . . . . 10 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
86, 7syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
98recnd 11209 . . . . . . . 8 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
101recnd 11209 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
119, 10subcld 11540 . . . . . . 7 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈ ℂ)
1211abscld 15412 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
1312recnd 11209 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ)
14 dnibndlem2.4 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
1514, 9eqeltrrd 2830 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
16 dnibndlem2.2 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1716recnd 11209 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1815, 17subcld 11540 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ)
1918abscld 15412 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
2019recnd 11209 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
2113, 20subcld 11540 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ)
2221abscld 15412 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
2311, 18subcld 11540 . . . 4 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
2423abscld 15412 . . 3 (𝜑 → (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
2510, 17subcld 11540 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℂ)
2625abscld 15412 . . 3 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
2711, 18abs2difabsd 15435 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
289, 17, 10nnncan1d 11574 . . . . . . 7 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (𝐵𝐴))
2928eqcomd 2736 . . . . . 6 (𝜑 → (𝐵𝐴) = (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
3029fveq2d 6865 . . . . 5 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3114oveq1d 7405 . . . . . . 7 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐴) = ((⌊‘(𝐴 + (1 / 2))) − 𝐴))
3231oveq1d 7405 . . . . . 6 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
3332fveq2d 6865 . . . . 5 (𝜑 → (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))) = (abs‘(((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3418, 11abssubd 15429 . . . . 5 (𝜑 → (abs‘(((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
3530, 33, 343eqtrd 2769 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
3626leidd 11751 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) ≤ (abs‘(𝐵𝐴)))
3735, 36eqbrtrrd 5134 . . 3 (𝜑 → (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (abs‘(𝐵𝐴)))
3822, 24, 26, 27, 37letrd 11338 . 2 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴)))
39 dnibndlem2.1 . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
4039, 16, 1dnibndlem1 36473 . 2 (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)) ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴))))
4138, 40mpbird 257 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  1c1 11076   + caddc 11078  cle 11216  cmin 11412   / cdiv 11842  2c2 12248  cfl 13759  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fl 13761  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  dnibndlem13  36485
  Copyright terms: Public domain W3C validator