Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem2 Structured version   Visualization version   GIF version

Theorem dnibndlem2 34942
Description: Lemma for dnibnd 34954. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem2.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem2.2 (𝜑𝐴 ∈ ℝ)
dnibndlem2.3 (𝜑𝐵 ∈ ℝ)
dnibndlem2.4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
Assertion
Ref Expression
dnibndlem2 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem2
StepHypRef Expression
1 dnibndlem2.3 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
2 halfre 12367 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
32a1i 11 . . . . . . . . . . . 12 (𝜑 → (1 / 2) ∈ ℝ)
41, 3jca 512 . . . . . . . . . . 11 (𝜑 → (𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
5 readdcl 11134 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐵 + (1 / 2)) ∈ ℝ)
64, 5syl 17 . . . . . . . . . 10 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
7 reflcl 13701 . . . . . . . . . 10 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
86, 7syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
98recnd 11183 . . . . . . . 8 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
101recnd 11183 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
119, 10subcld 11512 . . . . . . 7 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐵) ∈ ℂ)
1211abscld 15321 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
1312recnd 11183 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℂ)
14 dnibndlem2.4 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
1514, 9eqeltrrd 2839 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
16 dnibndlem2.2 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1716recnd 11183 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1815, 17subcld 11512 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ)
1918abscld 15321 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
2019recnd 11183 . . . . 5 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
2113, 20subcld 11512 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ)
2221abscld 15321 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
2311, 18subcld 11512 . . . 4 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℂ)
2423abscld 15321 . . 3 (𝜑 → (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
2510, 17subcld 11512 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℂ)
2625abscld 15321 . . 3 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
2711, 18abs2difabsd 15344 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
289, 17, 10nnncan1d 11546 . . . . . . 7 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (𝐵𝐴))
2928eqcomd 2742 . . . . . 6 (𝜑 → (𝐵𝐴) = (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
3029fveq2d 6846 . . . . 5 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3114oveq1d 7372 . . . . . . 7 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − 𝐴) = ((⌊‘(𝐴 + (1 / 2))) − 𝐴))
3231oveq1d 7372 . . . . . 6 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)) = (((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵)))
3332fveq2d 6846 . . . . 5 (𝜑 → (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))) = (abs‘(((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))))
3418, 11abssubd 15338 . . . . 5 (𝜑 → (abs‘(((⌊‘(𝐴 + (1 / 2))) − 𝐴) − ((⌊‘(𝐵 + (1 / 2))) − 𝐵))) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
3530, 33, 343eqtrd 2780 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
3626leidd 11721 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) ≤ (abs‘(𝐵𝐴)))
3735, 36eqbrtrrd 5129 . . 3 (𝜑 → (abs‘(((⌊‘(𝐵 + (1 / 2))) − 𝐵) − ((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (abs‘(𝐵𝐴)))
3822, 24, 26, 27, 37letrd 11312 . 2 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴)))
39 dnibndlem2.1 . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
4039, 16, 1dnibndlem1 34941 . 2 (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)) ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴))))
4138, 40mpbird 256 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  1c1 11052   + caddc 11054  cle 11190  cmin 11385   / cdiv 11812  2c2 12208  cfl 13695  abscabs 15119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fl 13697  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121
This theorem is referenced by:  dnibndlem13  34953
  Copyright terms: Public domain W3C validator