| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnibndlem12 | Structured version Visualization version GIF version | ||
| Description: Lemma for dnibnd 36438. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
| Ref | Expression |
|---|---|
| dnibndlem12.1 | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| dnibndlem12.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dnibndlem12.3 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| dnibndlem12.4 | ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) |
| Ref | Expression |
|---|---|
| dnibndlem12 | ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnibndlem12.3 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 2 | 1 | dnicld1 36419 | . . . . . 6 ⊢ (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ) |
| 3 | dnibndlem12.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | 3 | dnicld1 36419 | . . . . . 6 ⊢ (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) |
| 5 | 2, 4 | resubcld 11658 | . . . . 5 ⊢ (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ) |
| 6 | 5 | recnd 11256 | . . . 4 ⊢ (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ) |
| 7 | 6 | abscld 15444 | . . 3 ⊢ (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ) |
| 8 | 1red 11229 | . . 3 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 9 | 1, 3 | resubcld 11658 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
| 10 | 9 | recnd 11256 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℂ) |
| 11 | 10 | abscld 15444 | . . 3 ⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) ∈ ℝ) |
| 12 | 8 | rehalfcld 12481 | . . . 4 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
| 13 | 3, 1 | dnibndlem11 36435 | . . . 4 ⊢ (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2)) |
| 14 | halflt1 12451 | . . . . . 6 ⊢ (1 / 2) < 1 | |
| 15 | halfre 12447 | . . . . . . . 8 ⊢ (1 / 2) ∈ ℝ | |
| 16 | 1re 11228 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 17 | 15, 16 | pm3.2i 470 | . . . . . . 7 ⊢ ((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) |
| 18 | ltle 11316 | . . . . . . 7 ⊢ (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2) < 1 → (1 / 2) ≤ 1)) | |
| 19 | 17, 18 | ax-mp 5 | . . . . . 6 ⊢ ((1 / 2) < 1 → (1 / 2) ≤ 1) |
| 20 | 14, 19 | ax-mp 5 | . . . . 5 ⊢ (1 / 2) ≤ 1 |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 / 2) ≤ 1) |
| 22 | 7, 12, 8, 13, 21 | letrd 11385 | . . 3 ⊢ (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 1) |
| 23 | dnibndlem12.4 | . . . . 5 ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) | |
| 24 | 3, 1, 23 | dnibndlem10 36434 | . . . 4 ⊢ (𝜑 → 1 ≤ (𝐵 − 𝐴)) |
| 25 | 9 | leabsd 15422 | . . . 4 ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (abs‘(𝐵 − 𝐴))) |
| 26 | 8, 9, 11, 24, 25 | letrd 11385 | . . 3 ⊢ (𝜑 → 1 ≤ (abs‘(𝐵 − 𝐴))) |
| 27 | 7, 8, 11, 22, 26 | letrd 11385 | . 2 ⊢ (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵 − 𝐴))) |
| 28 | dnibndlem12.1 | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 29 | 28, 3, 1 | dnibndlem1 36425 | . 2 ⊢ (𝜑 → ((abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴)) ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵 − 𝐴)))) |
| 30 | 27, 29 | mpbird 257 | 1 ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5117 ↦ cmpt 5199 ‘cfv 6528 (class class class)co 7400 ℝcr 11121 1c1 11123 + caddc 11125 < clt 11262 ≤ cle 11263 − cmin 11459 / cdiv 11887 2c2 12288 ⌊cfl 13797 abscabs 15242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-pre-sup 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-sup 9449 df-inf 9450 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-div 11888 df-nn 12234 df-2 12296 df-3 12297 df-n0 12495 df-z 12582 df-uz 12846 df-rp 13002 df-fl 13799 df-seq 14010 df-exp 14070 df-cj 15107 df-re 15108 df-im 15109 df-sqrt 15243 df-abs 15244 |
| This theorem is referenced by: dnibndlem13 36437 |
| Copyright terms: Public domain | W3C validator |