Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem12 Structured version   Visualization version   GIF version

Theorem dnibndlem12 35669
Description: Lemma for dnibnd 35671. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem12.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem12.2 (𝜑𝐴 ∈ ℝ)
dnibndlem12.3 (𝜑𝐵 ∈ ℝ)
dnibndlem12.4 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
Assertion
Ref Expression
dnibndlem12 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem12
StepHypRef Expression
1 dnibndlem12.3 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
21dnicld1 35652 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
3 dnibndlem12.2 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
43dnicld1 35652 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
52, 4resubcld 11647 . . . . 5 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
65recnd 11247 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ)
76abscld 15388 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
8 1red 11220 . . 3 (𝜑 → 1 ∈ ℝ)
91, 3resubcld 11647 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
109recnd 11247 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℂ)
1110abscld 15388 . . 3 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
128rehalfcld 12464 . . . 4 (𝜑 → (1 / 2) ∈ ℝ)
133, 1dnibndlem11 35668 . . . 4 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2))
14 halflt1 12435 . . . . . 6 (1 / 2) < 1
15 halfre 12431 . . . . . . . 8 (1 / 2) ∈ ℝ
16 1re 11219 . . . . . . . 8 1 ∈ ℝ
1715, 16pm3.2i 470 . . . . . . 7 ((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ)
18 ltle 11307 . . . . . . 7 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2) < 1 → (1 / 2) ≤ 1))
1917, 18ax-mp 5 . . . . . 6 ((1 / 2) < 1 → (1 / 2) ≤ 1)
2014, 19ax-mp 5 . . . . 5 (1 / 2) ≤ 1
2120a1i 11 . . . 4 (𝜑 → (1 / 2) ≤ 1)
227, 12, 8, 13, 21letrd 11376 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 1)
23 dnibndlem12.4 . . . . 5 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
243, 1, 23dnibndlem10 35667 . . . 4 (𝜑 → 1 ≤ (𝐵𝐴))
259leabsd 15366 . . . 4 (𝜑 → (𝐵𝐴) ≤ (abs‘(𝐵𝐴)))
268, 9, 11, 24, 25letrd 11376 . . 3 (𝜑 → 1 ≤ (abs‘(𝐵𝐴)))
277, 8, 11, 22, 26letrd 11376 . 2 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴)))
28 dnibndlem12.1 . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2928, 3, 1dnibndlem1 35658 . 2 (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)) ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴))))
3027, 29mpbird 256 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105   class class class wbr 5149  cmpt 5232  cfv 6544  (class class class)co 7412  cr 11112  1c1 11114   + caddc 11116   < clt 11253  cle 11254  cmin 11449   / cdiv 11876  2c2 12272  cfl 13760  abscabs 15186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-sup 9440  df-inf 9441  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-rp 12980  df-fl 13762  df-seq 13972  df-exp 14033  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188
This theorem is referenced by:  dnibndlem13  35670
  Copyright terms: Public domain W3C validator