Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem12 Structured version   Visualization version   GIF version

Theorem dnibndlem12 36436
Description: Lemma for dnibnd 36438. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem12.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem12.2 (𝜑𝐴 ∈ ℝ)
dnibndlem12.3 (𝜑𝐵 ∈ ℝ)
dnibndlem12.4 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
Assertion
Ref Expression
dnibndlem12 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem12
StepHypRef Expression
1 dnibndlem12.3 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
21dnicld1 36419 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) ∈ ℝ)
3 dnibndlem12.2 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
43dnicld1 36419 . . . . . 6 (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
52, 4resubcld 11658 . . . . 5 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℝ)
65recnd 11256 . . . 4 (𝜑 → ((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ∈ ℂ)
76abscld 15444 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ∈ ℝ)
8 1red 11229 . . 3 (𝜑 → 1 ∈ ℝ)
91, 3resubcld 11658 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
109recnd 11256 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℂ)
1110abscld 15444 . . 3 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
128rehalfcld 12481 . . . 4 (𝜑 → (1 / 2) ∈ ℝ)
133, 1dnibndlem11 36435 . . . 4 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2))
14 halflt1 12451 . . . . . 6 (1 / 2) < 1
15 halfre 12447 . . . . . . . 8 (1 / 2) ∈ ℝ
16 1re 11228 . . . . . . . 8 1 ∈ ℝ
1715, 16pm3.2i 470 . . . . . . 7 ((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ)
18 ltle 11316 . . . . . . 7 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2) < 1 → (1 / 2) ≤ 1))
1917, 18ax-mp 5 . . . . . 6 ((1 / 2) < 1 → (1 / 2) ≤ 1)
2014, 19ax-mp 5 . . . . 5 (1 / 2) ≤ 1
2120a1i 11 . . . 4 (𝜑 → (1 / 2) ≤ 1)
227, 12, 8, 13, 21letrd 11385 . . 3 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 1)
23 dnibndlem12.4 . . . . 5 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
243, 1, 23dnibndlem10 36434 . . . 4 (𝜑 → 1 ≤ (𝐵𝐴))
259leabsd 15422 . . . 4 (𝜑 → (𝐵𝐴) ≤ (abs‘(𝐵𝐴)))
268, 9, 11, 24, 25letrd 11385 . . 3 (𝜑 → 1 ≤ (abs‘(𝐵𝐴)))
277, 8, 11, 22, 26letrd 11385 . 2 (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴)))
28 dnibndlem12.1 . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2928, 3, 1dnibndlem1 36425 . 2 (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)) ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (abs‘(𝐵𝐴))))
3027, 29mpbird 257 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107   class class class wbr 5117  cmpt 5199  cfv 6528  (class class class)co 7400  cr 11121  1c1 11123   + caddc 11125   < clt 11262  cle 11263  cmin 11459   / cdiv 11887  2c2 12288  cfl 13797  abscabs 15242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-sup 9449  df-inf 9450  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-n0 12495  df-z 12582  df-uz 12846  df-rp 13002  df-fl 13799  df-seq 14010  df-exp 14070  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244
This theorem is referenced by:  dnibndlem13  36437
  Copyright terms: Public domain W3C validator