|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dprdval0prc | Structured version Visualization version GIF version | ||
| Description: The internal direct product of a family of subgroups indexed by a proper class is empty. (Contributed by AV, 13-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| dprdval0prc | ⊢ (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nel 3046 | . . 3 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
| 2 | dmexg 7924 | . . . 4 ⊢ (𝑆 ∈ V → dom 𝑆 ∈ V) | |
| 3 | 2 | con3i 154 | . . 3 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V) | 
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V) | 
| 5 | reldmdprd 20018 | . . 3 ⊢ Rel dom DProd | |
| 6 | 5 | ovprc2 7472 | . 2 ⊢ (¬ 𝑆 ∈ V → (𝐺 DProd 𝑆) = ∅) | 
| 7 | 4, 6 | syl 17 | 1 ⊢ (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 ∉ wnel 3045 Vcvv 3479 ∅c0 4332 dom cdm 5684 (class class class)co 7432 DProd cdprd 20014 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-dm 5694 df-rn 5695 df-iota 6513 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-dprd 20016 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |