| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdval0prc | Structured version Visualization version GIF version | ||
| Description: The internal direct product of a family of subgroups indexed by a proper class is empty. (Contributed by AV, 13-Jul-2019.) |
| Ref | Expression |
|---|---|
| dprdval0prc | ⊢ (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3031 | . . 3 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
| 2 | dmexg 7879 | . . . 4 ⊢ (𝑆 ∈ V → dom 𝑆 ∈ V) | |
| 3 | 2 | con3i 154 | . . 3 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V) |
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V) |
| 5 | reldmdprd 19935 | . . 3 ⊢ Rel dom DProd | |
| 6 | 5 | ovprc2 7429 | . 2 ⊢ (¬ 𝑆 ∈ V → (𝐺 DProd 𝑆) = ∅) |
| 7 | 4, 6 | syl 17 | 1 ⊢ (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∉ wnel 3030 Vcvv 3450 ∅c0 4298 dom cdm 5640 (class class class)co 7389 DProd cdprd 19931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-cnv 5648 df-dm 5650 df-rn 5651 df-iota 6466 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-dprd 19933 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |