MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdval0prc Structured version   Visualization version   GIF version

Theorem dprdval0prc 20046
Description: The internal direct product of a family of subgroups indexed by a proper class is empty. (Contributed by AV, 13-Jul-2019.)
Assertion
Ref Expression
dprdval0prc (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅)

Proof of Theorem dprdval0prc
StepHypRef Expression
1 df-nel 3053 . . 3 (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V)
2 dmexg 7941 . . . 4 (𝑆 ∈ V → dom 𝑆 ∈ V)
32con3i 154 . . 3 (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V)
41, 3sylbi 217 . 2 (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V)
5 reldmdprd 20041 . . 3 Rel dom DProd
65ovprc2 7488 . 2 𝑆 ∈ V → (𝐺 DProd 𝑆) = ∅)
74, 6syl 17 1 (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  wnel 3052  Vcvv 3488  c0 4352  dom cdm 5700  (class class class)co 7448   DProd cdprd 20037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-iota 6525  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-dprd 20039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator