MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdval0prc Structured version   Visualization version   GIF version

Theorem dprdval0prc 19495
Description: The internal direct product of a family of subgroups indexed by a proper class is empty. (Contributed by AV, 13-Jul-2019.)
Assertion
Ref Expression
dprdval0prc (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅)

Proof of Theorem dprdval0prc
StepHypRef Expression
1 df-nel 3050 . . 3 (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V)
2 dmexg 7721 . . . 4 (𝑆 ∈ V → dom 𝑆 ∈ V)
32con3i 157 . . 3 (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V)
41, 3sylbi 220 . 2 (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V)
5 reldmdprd 19490 . . 3 Rel dom DProd
65ovprc2 7292 . 2 𝑆 ∈ V → (𝐺 DProd 𝑆) = ∅)
74, 6syl 17 1 (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1543  wcel 2112  wnel 3049  Vcvv 3423  c0 4254  dom cdm 5579  (class class class)co 7252   DProd cdprd 19486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346  ax-un 7563
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5585  df-rel 5586  df-cnv 5587  df-dm 5589  df-rn 5590  df-iota 6373  df-fv 6423  df-ov 7255  df-oprab 7256  df-mpo 7257  df-dprd 19488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator