| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdval0prc | Structured version Visualization version GIF version | ||
| Description: The internal direct product of a family of subgroups indexed by a proper class is empty. (Contributed by AV, 13-Jul-2019.) |
| Ref | Expression |
|---|---|
| dprdval0prc | ⊢ (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3034 | . . 3 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
| 2 | dmexg 7840 | . . . 4 ⊢ (𝑆 ∈ V → dom 𝑆 ∈ V) | |
| 3 | 2 | con3i 154 | . . 3 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V) |
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V) |
| 5 | reldmdprd 19919 | . . 3 ⊢ Rel dom DProd | |
| 6 | 5 | ovprc2 7395 | . 2 ⊢ (¬ 𝑆 ∈ V → (𝐺 DProd 𝑆) = ∅) |
| 7 | 4, 6 | syl 17 | 1 ⊢ (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 ∉ wnel 3033 Vcvv 3437 ∅c0 4282 dom cdm 5621 (class class class)co 7355 DProd cdprd 19915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-iota 6445 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-dprd 19917 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |