MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdval0prc Structured version   Visualization version   GIF version

Theorem dprdval0prc 19924
Description: The internal direct product of a family of subgroups indexed by a proper class is empty. (Contributed by AV, 13-Jul-2019.)
Assertion
Ref Expression
dprdval0prc (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅)

Proof of Theorem dprdval0prc
StepHypRef Expression
1 df-nel 3034 . . 3 (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V)
2 dmexg 7840 . . . 4 (𝑆 ∈ V → dom 𝑆 ∈ V)
32con3i 154 . . 3 (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V)
41, 3sylbi 217 . 2 (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V)
5 reldmdprd 19919 . . 3 Rel dom DProd
65ovprc2 7395 . 2 𝑆 ∈ V → (𝐺 DProd 𝑆) = ∅)
74, 6syl 17 1 (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  wnel 3033  Vcvv 3437  c0 4282  dom cdm 5621  (class class class)co 7355   DProd cdprd 19915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-iota 6445  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-dprd 19917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator