Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprdval0prc | Structured version Visualization version GIF version |
Description: The internal direct product of a family of subgroups indexed by a proper class is empty. (Contributed by AV, 13-Jul-2019.) |
Ref | Expression |
---|---|
dprdval0prc | ⊢ (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3050 | . . 3 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
2 | dmexg 7721 | . . . 4 ⊢ (𝑆 ∈ V → dom 𝑆 ∈ V) | |
3 | 2 | con3i 157 | . . 3 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V) |
4 | 1, 3 | sylbi 220 | . 2 ⊢ (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V) |
5 | reldmdprd 19490 | . . 3 ⊢ Rel dom DProd | |
6 | 5 | ovprc2 7292 | . 2 ⊢ (¬ 𝑆 ∈ V → (𝐺 DProd 𝑆) = ∅) |
7 | 4, 6 | syl 17 | 1 ⊢ (dom 𝑆 ∉ V → (𝐺 DProd 𝑆) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1543 ∈ wcel 2112 ∉ wnel 3049 Vcvv 3423 ∅c0 4254 dom cdm 5579 (class class class)co 7252 DProd cdprd 19486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5585 df-rel 5586 df-cnv 5587 df-dm 5589 df-rn 5590 df-iota 6373 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-dprd 19488 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |