| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsmul1 | Structured version Visualization version GIF version | ||
| Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdsmul1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12513 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | zcn 12513 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 3 | mulcom 11133 | . . 3 ⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 · 𝑀) = (𝑀 · 𝑁)) | |
| 4 | 1, 2, 3 | syl2anr 597 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 · 𝑀) = (𝑀 · 𝑁)) |
| 5 | zmulcl 12561 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | |
| 6 | dvds0lem 16214 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) ∧ (𝑁 · 𝑀) = (𝑀 · 𝑁)) → 𝑀 ∥ (𝑀 · 𝑁)) | |
| 7 | 6 | ex 412 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁))) |
| 8 | 7 | 3com12 1123 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁))) |
| 9 | 5, 8 | mpd3an3 1464 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁))) |
| 10 | 4, 9 | mpd 15 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7370 ℂcc 11045 · cmul 11052 ℤcz 12508 ∥ cdvds 16200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-er 8649 df-en 8897 df-dom 8898 df-sdom 8899 df-pnf 11189 df-mnf 11190 df-ltxr 11192 df-sub 11386 df-neg 11387 df-nn 12166 df-n0 12422 df-z 12509 df-dvds 16201 |
| This theorem is referenced by: dvdsmultr1 16244 3dvdsdec 16280 3dvds2dec 16281 2teven 16303 opoe 16311 omoe 16312 z4even 16320 ndvdsi 16360 bits0e 16377 bits0o 16378 mulgcd 16496 dvdsmulgcd 16504 lcmcllem 16544 lcmgcdlem 16554 qredeq 16605 cncongr2 16616 nprm 16636 exprmfct 16652 prmdiv 16733 iserodd 16784 difsqpwdvds 16836 expnprm 16851 pockthlem 16854 prmreclem3 16867 4sqlem14 16907 odmulg2 19471 odbezout 19474 gexdvds 19500 sylow2alem2 19534 odadd1 19764 odadd2 19765 gexexlem 19768 prmirredlem 21416 znunit 21507 wilthlem2 27014 dvdsflf1o 27132 mpodvdsmulf1o 27139 dvdsmulf1o 27141 ppiublem1 27148 perfectlem1 27175 bposlem3 27232 lgsdir 27278 lgsquadlem1 27326 lgsquad2lem1 27330 lgsquad2lem2 27331 2lgsoddprmlem2 27355 2lgsoddprmlem3 27360 2sqlem4 27367 2sqblem 27377 2sqmod 27382 dchrisumlem1 27435 ex-ind-dvds 30442 jm2.23 42980 jm2.27c 42991 inductionexd 44139 fouriersw 46224 etransclem24 46251 etransclem28 46255 2pwp1prm 47585 m2even 47650 perfectALTVlem1 47717 |
| Copyright terms: Public domain | W3C validator |