Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvdsmul1 | Structured version Visualization version GIF version |
Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvdsmul1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12181 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | zcn 12181 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
3 | mulcom 10815 | . . 3 ⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 · 𝑀) = (𝑀 · 𝑁)) | |
4 | 1, 2, 3 | syl2anr 600 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 · 𝑀) = (𝑀 · 𝑁)) |
5 | zmulcl 12226 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | |
6 | dvds0lem 15828 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) ∧ (𝑁 · 𝑀) = (𝑀 · 𝑁)) → 𝑀 ∥ (𝑀 · 𝑁)) | |
7 | 6 | ex 416 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁))) |
8 | 7 | 3com12 1125 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁))) |
9 | 5, 8 | mpd3an3 1464 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁))) |
10 | 4, 9 | mpd 15 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 (class class class)co 7213 ℂcc 10727 · cmul 10734 ℤcz 12176 ∥ cdvds 15815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-dvds 15816 |
This theorem is referenced by: dvdsmultr1 15857 3dvdsdec 15893 3dvds2dec 15894 2teven 15916 opoe 15924 omoe 15925 z4even 15933 ndvdsi 15973 bits0e 15988 bits0o 15989 mulgcd 16108 dvdsmulgcd 16117 lcmcllem 16153 lcmgcdlem 16163 qredeq 16214 cncongr2 16225 nprm 16245 exprmfct 16261 prmdiv 16338 iserodd 16388 difsqpwdvds 16440 expnprm 16455 pockthlem 16458 prmreclem3 16471 4sqlem14 16511 odmulg2 18946 odbezout 18949 gexdvds 18973 sylow2alem2 19007 odadd1 19233 odadd2 19234 gexexlem 19237 prmirredlem 20459 znunit 20528 wilthlem2 25951 dvdsflf1o 26069 dvdsmulf1o 26076 ppiublem1 26083 perfectlem1 26110 bposlem3 26167 lgsdir 26213 lgsquadlem1 26261 lgsquad2lem1 26265 lgsquad2lem2 26266 2lgsoddprmlem2 26290 2lgsoddprmlem3 26295 2sqlem4 26302 2sqblem 26312 2sqmod 26317 dchrisumlem1 26370 ex-ind-dvds 28544 jm2.23 40521 jm2.27c 40532 inductionexd 41442 fouriersw 43447 etransclem24 43474 etransclem28 43478 2pwp1prm 44714 m2even 44779 perfectALTVlem1 44846 |
Copyright terms: Public domain | W3C validator |