| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsmul1 | Structured version Visualization version GIF version | ||
| Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdsmul1 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12541 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | zcn 12541 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 3 | mulcom 11161 | . . 3 ⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 · 𝑀) = (𝑀 · 𝑁)) | |
| 4 | 1, 2, 3 | syl2anr 597 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 · 𝑀) = (𝑀 · 𝑁)) |
| 5 | zmulcl 12589 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | |
| 6 | dvds0lem 16243 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) ∧ (𝑁 · 𝑀) = (𝑀 · 𝑁)) → 𝑀 ∥ (𝑀 · 𝑁)) | |
| 7 | 6 | ex 412 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁))) |
| 8 | 7 | 3com12 1123 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁))) |
| 9 | 5, 8 | mpd3an3 1464 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 · 𝑀) = (𝑀 · 𝑁) → 𝑀 ∥ (𝑀 · 𝑁))) |
| 10 | 4, 9 | mpd 15 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℂcc 11073 · cmul 11080 ℤcz 12536 ∥ cdvds 16229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-dvds 16230 |
| This theorem is referenced by: dvdsmultr1 16273 3dvdsdec 16309 3dvds2dec 16310 2teven 16332 opoe 16340 omoe 16341 z4even 16349 ndvdsi 16389 bits0e 16406 bits0o 16407 mulgcd 16525 dvdsmulgcd 16533 lcmcllem 16573 lcmgcdlem 16583 qredeq 16634 cncongr2 16645 nprm 16665 exprmfct 16681 prmdiv 16762 iserodd 16813 difsqpwdvds 16865 expnprm 16880 pockthlem 16883 prmreclem3 16896 4sqlem14 16936 odmulg2 19492 odbezout 19495 gexdvds 19521 sylow2alem2 19555 odadd1 19785 odadd2 19786 gexexlem 19789 prmirredlem 21389 znunit 21480 wilthlem2 26986 dvdsflf1o 27104 mpodvdsmulf1o 27111 dvdsmulf1o 27113 ppiublem1 27120 perfectlem1 27147 bposlem3 27204 lgsdir 27250 lgsquadlem1 27298 lgsquad2lem1 27302 lgsquad2lem2 27303 2lgsoddprmlem2 27327 2lgsoddprmlem3 27332 2sqlem4 27339 2sqblem 27349 2sqmod 27354 dchrisumlem1 27407 ex-ind-dvds 30397 jm2.23 42992 jm2.27c 43003 inductionexd 44151 fouriersw 46236 etransclem24 46263 etransclem28 46267 2pwp1prm 47594 m2even 47659 perfectALTVlem1 47726 |
| Copyright terms: Public domain | W3C validator |