MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvds0 Structured version   Visualization version   GIF version

Theorem dvds0 16296
Description: Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds0 (𝑁 ∈ ℤ → 𝑁 ∥ 0)

Proof of Theorem dvds0
StepHypRef Expression
1 zcn 12598 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
21mul02d 11438 . 2 (𝑁 ∈ ℤ → (0 · 𝑁) = 0)
3 0z 12604 . . 3 0 ∈ ℤ
4 dvds0lem 16291 . . . 4 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 · 𝑁) = 0) → 𝑁 ∥ 0)
54ex 412 . . 3 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → ((0 · 𝑁) = 0 → 𝑁 ∥ 0))
63, 3, 5mp3an13 1454 . 2 (𝑁 ∈ ℤ → ((0 · 𝑁) = 0 → 𝑁 ∥ 0))
72, 6mpd 15 1 (𝑁 ∈ ℤ → 𝑁 ∥ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  (class class class)co 7410  0cc0 11134   · cmul 11139  cz 12593  cdvds 16277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-ltxr 11279  df-neg 11474  df-z 12594  df-dvds 16278
This theorem is referenced by:  0dvds  16301  fsumdvds  16332  alzdvds  16344  fzo0dvdseq  16347  z0even  16391  sadadd3  16485  gcddvds  16527  gcd0id  16543  bezoutlem4  16566  dfgcd2  16570  dvdssq  16591  dvdslcm  16622  lcmdvds  16632  dvdslcmf  16655  mulgcddvds  16679  odzdvds  16820  pcdvdsb  16894  pcz  16906  sylow2blem3  19608  odadd1  19834  odadd2  19835  cyggex2  19883  lgsne0  27303  lgsqr  27319  nn0prpw  36346  poimirlem25  37674  poimirlem26  37675  poimirlem27  37676  poimirlem28  37677  aks6d1c5lem1  42154  0dvds0  42343  dvdsexpnn0  42350  congid  42962  jm2.18  42979  jm2.19  42984  jm2.22  42986  jm2.23  42987  etransclem24  46254  etransclem25  46255  etransclem28  46258
  Copyright terms: Public domain W3C validator