| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvds0 | Structured version Visualization version GIF version | ||
| Description: Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvds0 | ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12494 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | 1 | mul02d 11332 | . 2 ⊢ (𝑁 ∈ ℤ → (0 · 𝑁) = 0) |
| 3 | 0z 12500 | . . 3 ⊢ 0 ∈ ℤ | |
| 4 | dvds0lem 16195 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 · 𝑁) = 0) → 𝑁 ∥ 0) | |
| 5 | 4 | ex 412 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → ((0 · 𝑁) = 0 → 𝑁 ∥ 0)) |
| 6 | 3, 3, 5 | mp3an13 1454 | . 2 ⊢ (𝑁 ∈ ℤ → ((0 · 𝑁) = 0 → 𝑁 ∥ 0)) |
| 7 | 2, 6 | mpd 15 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 0cc0 11028 · cmul 11033 ℤcz 12489 ∥ cdvds 16181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-neg 11368 df-z 12490 df-dvds 16182 |
| This theorem is referenced by: 0dvds 16205 fsumdvds 16237 alzdvds 16249 fzo0dvdseq 16252 z0even 16296 sadadd3 16390 gcddvds 16432 gcd0id 16448 bezoutlem4 16471 dfgcd2 16475 dvdssq 16496 dvdslcm 16527 lcmdvds 16537 dvdslcmf 16560 mulgcddvds 16584 odzdvds 16725 pcdvdsb 16799 pcz 16811 sylow2blem3 19519 odadd1 19745 odadd2 19746 cyggex2 19794 lgsne0 27262 lgsqr 27278 nn0prpw 36296 poimirlem25 37624 poimirlem26 37625 poimirlem27 37626 poimirlem28 37627 aks6d1c5lem1 42109 0dvds0 42300 dvdsexpnn0 42307 congid 42944 jm2.18 42961 jm2.19 42966 jm2.22 42968 jm2.23 42969 etransclem24 46240 etransclem25 46241 etransclem28 46244 |
| Copyright terms: Public domain | W3C validator |