| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvds0 | Structured version Visualization version GIF version | ||
| Description: Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvds0 | ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12483 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | 1 | mul02d 11321 | . 2 ⊢ (𝑁 ∈ ℤ → (0 · 𝑁) = 0) |
| 3 | 0z 12489 | . . 3 ⊢ 0 ∈ ℤ | |
| 4 | dvds0lem 16187 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 · 𝑁) = 0) → 𝑁 ∥ 0) | |
| 5 | 4 | ex 412 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → ((0 · 𝑁) = 0 → 𝑁 ∥ 0)) |
| 6 | 3, 3, 5 | mp3an13 1454 | . 2 ⊢ (𝑁 ∈ ℤ → ((0 · 𝑁) = 0 → 𝑁 ∥ 0)) |
| 7 | 2, 6 | mpd 15 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 0cc0 11016 · cmul 11021 ℤcz 12478 ∥ cdvds 16173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-ltxr 11161 df-neg 11357 df-z 12479 df-dvds 16174 |
| This theorem is referenced by: 0dvds 16197 fsumdvds 16229 alzdvds 16241 fzo0dvdseq 16244 z0even 16288 sadadd3 16382 gcddvds 16424 gcd0id 16440 bezoutlem4 16463 dfgcd2 16467 dvdssq 16488 dvdslcm 16519 lcmdvds 16529 dvdslcmf 16552 mulgcddvds 16576 odzdvds 16717 pcdvdsb 16791 pcz 16803 sylow2blem3 19544 odadd1 19770 odadd2 19771 cyggex2 19819 lgsne0 27283 lgsqr 27299 nn0prpw 36378 poimirlem25 37695 poimirlem26 37696 poimirlem27 37697 poimirlem28 37698 aks6d1c5lem1 42239 0dvds0 42435 dvdsexpnn0 42442 congid 43078 jm2.18 43095 jm2.19 43100 jm2.22 43102 jm2.23 43103 etransclem24 46370 etransclem25 46371 etransclem28 46374 |
| Copyright terms: Public domain | W3C validator |