MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvds0 Structured version   Visualization version   GIF version

Theorem dvds0 15833
Description: Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds0 (𝑁 ∈ ℤ → 𝑁 ∥ 0)

Proof of Theorem dvds0
StepHypRef Expression
1 zcn 12181 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
21mul02d 11030 . 2 (𝑁 ∈ ℤ → (0 · 𝑁) = 0)
3 0z 12187 . . 3 0 ∈ ℤ
4 dvds0lem 15828 . . . 4 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 · 𝑁) = 0) → 𝑁 ∥ 0)
54ex 416 . . 3 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → ((0 · 𝑁) = 0 → 𝑁 ∥ 0))
63, 3, 5mp3an13 1454 . 2 (𝑁 ∈ ℤ → ((0 · 𝑁) = 0 → 𝑁 ∥ 0))
72, 6mpd 15 1 (𝑁 ∈ ℤ → 𝑁 ∥ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5053  (class class class)co 7213  0cc0 10729   · cmul 10734  cz 12176  cdvds 15815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-ltxr 10872  df-neg 11065  df-z 12177  df-dvds 15816
This theorem is referenced by:  0dvds  15838  fsumdvds  15869  alzdvds  15881  fzo0dvdseq  15884  z0even  15928  sadadd3  16020  gcddvds  16062  gcd0id  16078  bezoutlem4  16102  dfgcd2  16106  dvdssq  16124  dvdslcm  16155  lcmdvds  16165  dvdslcmf  16188  mulgcddvds  16212  odzdvds  16348  pcdvdsb  16422  pcz  16434  sylow2blem3  19011  odadd1  19233  odadd2  19234  cyggex2  19282  lgsne0  26216  lgsqr  26232  nn0prpw  34249  poimirlem25  35539  poimirlem26  35540  poimirlem27  35541  poimirlem28  35542  0dvds0  40034  dvdsexpnn0  40049  congid  40496  jm2.18  40513  jm2.19  40518  jm2.22  40520  jm2.23  40521  etransclem24  43474  etransclem25  43475  etransclem28  43478
  Copyright terms: Public domain W3C validator