MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvds0 Structured version   Visualization version   GIF version

Theorem dvds0 16241
Description: Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds0 (𝑁 ∈ ℤ → 𝑁 ∥ 0)

Proof of Theorem dvds0
StepHypRef Expression
1 zcn 12534 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
21mul02d 11372 . 2 (𝑁 ∈ ℤ → (0 · 𝑁) = 0)
3 0z 12540 . . 3 0 ∈ ℤ
4 dvds0lem 16236 . . . 4 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 · 𝑁) = 0) → 𝑁 ∥ 0)
54ex 412 . . 3 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → ((0 · 𝑁) = 0 → 𝑁 ∥ 0))
63, 3, 5mp3an13 1454 . 2 (𝑁 ∈ ℤ → ((0 · 𝑁) = 0 → 𝑁 ∥ 0))
72, 6mpd 15 1 (𝑁 ∈ ℤ → 𝑁 ∥ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  (class class class)co 7387  0cc0 11068   · cmul 11073  cz 12529  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-neg 11408  df-z 12530  df-dvds 16223
This theorem is referenced by:  0dvds  16246  fsumdvds  16278  alzdvds  16290  fzo0dvdseq  16293  z0even  16337  sadadd3  16431  gcddvds  16473  gcd0id  16489  bezoutlem4  16512  dfgcd2  16516  dvdssq  16537  dvdslcm  16568  lcmdvds  16578  dvdslcmf  16601  mulgcddvds  16625  odzdvds  16766  pcdvdsb  16840  pcz  16852  sylow2blem3  19552  odadd1  19778  odadd2  19779  cyggex2  19827  lgsne0  27246  lgsqr  27262  nn0prpw  36311  poimirlem25  37639  poimirlem26  37640  poimirlem27  37641  poimirlem28  37642  aks6d1c5lem1  42124  0dvds0  42315  dvdsexpnn0  42322  congid  42960  jm2.18  42977  jm2.19  42982  jm2.22  42984  jm2.23  42985  etransclem24  46256  etransclem25  46257  etransclem28  46260
  Copyright terms: Public domain W3C validator