MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvds0 Structured version   Visualization version   GIF version

Theorem dvds0 15619
Description: Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds0 (𝑁 ∈ ℤ → 𝑁 ∥ 0)

Proof of Theorem dvds0
StepHypRef Expression
1 zcn 11980 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
21mul02d 10832 . 2 (𝑁 ∈ ℤ → (0 · 𝑁) = 0)
3 0z 11986 . . 3 0 ∈ ℤ
4 dvds0lem 15614 . . . 4 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 · 𝑁) = 0) → 𝑁 ∥ 0)
54ex 415 . . 3 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → ((0 · 𝑁) = 0 → 𝑁 ∥ 0))
63, 3, 5mp3an13 1448 . 2 (𝑁 ∈ ℤ → ((0 · 𝑁) = 0 → 𝑁 ∥ 0))
72, 6mpd 15 1 (𝑁 ∈ ℤ → 𝑁 ∥ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1533  wcel 2110   class class class wbr 5059  (class class class)co 7150  0cc0 10531   · cmul 10536  cz 11975  cdvds 15601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-ltxr 10674  df-neg 10867  df-z 11976  df-dvds 15602
This theorem is referenced by:  0dvds  15624  fsumdvds  15652  alzdvds  15664  fzo0dvdseq  15667  z0even  15710  sadadd3  15804  gcddvds  15846  gcd0id  15861  bezoutlem4  15884  dfgcd2  15888  dvdssq  15905  dvdslcm  15936  lcmdvds  15946  dvdslcmf  15969  mulgcddvds  15993  odzdvds  16126  pcdvdsb  16199  pcz  16211  sylow2blem3  18741  odadd1  18962  odadd2  18963  cyggex2  19011  lgsne0  25905  lgsqr  25921  nn0prpw  33666  poimirlem25  34911  poimirlem26  34912  poimirlem27  34913  poimirlem28  34914  congid  39561  jm2.18  39578  jm2.19  39583  jm2.22  39585  jm2.23  39586  etransclem24  42536  etransclem25  42537  etransclem28  42540
  Copyright terms: Public domain W3C validator