MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmul2 Structured version   Visualization version   GIF version

Theorem dvdsmul2 16316
Description: An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmul2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))

Proof of Theorem dvdsmul2
StepHypRef Expression
1 zmulcl 12666 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
2 eqid 2737 . . 3 (𝑀 · 𝑁) = (𝑀 · 𝑁)
3 dvds0lem 16304 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) ∧ (𝑀 · 𝑁) = (𝑀 · 𝑁)) → 𝑁 ∥ (𝑀 · 𝑁))
42, 3mpan2 691 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))
51, 4mpd3an3 1464 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431   · cmul 11160  cz 12613  cdvds 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-dvds 16291
This theorem is referenced by:  iddvdsexp  16317  dvdsmultr2  16335  dvdsfac  16363  dvdsexp2im  16364  dvdsexp  16365  fprodfvdvdsd  16371  bitsinv1lem  16478  bitsuz  16511  bitsshft  16512  bezoutlem4  16579  dvdssqim  16591  dvdsexpim  16592  lcmcllem  16633  qredeq  16694  cncongr1  16704  hashdvds  16812  phimullem  16816  difsqpwdvds  16925  oddprmdvds  16941  4sqlem8  16983  prmdvdsprmo  17080  dec2dvds  17101  lagsubg  19213  odadd2  19867  ppiublem1  27246  perfectlem2  27274  lgsdir2lem2  27370  lgsquadlem2  27425  lgsquadlem3  27426  lgsquad2lem1  27428  lgsquad2lem2  27429  2sqlem3  27464  2sqlem8  27470  clwwlkndivn  30099  primrootspoweq0  42107  jm2.19lem2  43002  jm2.23  43008  jm2.20nn  43009  jm2.25  43011  jm2.27a  43017  lighneallem4  47597  perfectALTVlem2  47709
  Copyright terms: Public domain W3C validator