MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modm1div Structured version   Visualization version   GIF version

Theorem modm1div 16193
Description: An integer greater than one divides another integer minus one iff the second integer modulo the first integer is one. (Contributed by AV, 30-May-2023.)
Assertion
Ref Expression
modm1div ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ 𝑁 ∥ (𝐴 − 1)))

Proof of Theorem modm1div
StepHypRef Expression
1 eluzelre 12764 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
2 eluz2gt1 12839 . . . . 5 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
32adantr 480 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 1 < 𝑁)
4 1mod 13825 . . . . 5 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
54eqcomd 2735 . . . 4 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 1 = (1 mod 𝑁))
61, 3, 5syl2an2r 685 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 1 = (1 mod 𝑁))
76eqeq2d 2740 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ (𝐴 mod 𝑁) = (1 mod 𝑁)))
8 eluz2nn 12807 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
98adantr 480 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 𝑁 ∈ ℕ)
10 simpr 484 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
11 1zzd 12524 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 1 ∈ ℤ)
12 moddvds 16192 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴 mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 1)))
139, 10, 11, 12syl3anc 1373 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 1)))
147, 13bitrd 279 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ 𝑁 ∥ (𝐴 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  1c1 11029   < clt 11168  cmin 11365  cn 12146  2c2 12201  cz 12489  cuz 12753   mod cmo 13791  cdvds 16181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fl 13714  df-mod 13792  df-dvds 16182
This theorem is referenced by:  modprm1div  16727  fpprmod  47712  fpprwpprb  47725
  Copyright terms: Public domain W3C validator