MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modm1div Structured version   Visualization version   GIF version

Theorem modm1div 15660
Description: A number greater than 1 divides an integer minus 1 iff the integer modulo the number is 1. (Contributed by AV, 30-May-2023.)
Assertion
Ref Expression
modm1div ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ 𝑁 ∥ (𝐴 − 1)))

Proof of Theorem modm1div
StepHypRef Expression
1 eluzelre 12286 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
2 eluz2gt1 12353 . . . . 5 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
32adantr 485 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 1 < 𝑁)
4 1mod 13313 . . . . 5 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
54eqcomd 2765 . . . 4 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → 1 = (1 mod 𝑁))
61, 3, 5syl2an2r 685 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 1 = (1 mod 𝑁))
76eqeq2d 2770 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ (𝐴 mod 𝑁) = (1 mod 𝑁)))
8 eluz2nn 12317 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
98adantr 485 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 𝑁 ∈ ℕ)
10 simpr 489 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
11 1zzd 12045 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 1 ∈ ℤ)
12 moddvds 15659 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴 mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 1)))
139, 10, 11, 12syl3anc 1369 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 1)))
147, 13bitrd 282 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ 𝑁 ∥ (𝐴 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112   class class class wbr 5033  cfv 6336  (class class class)co 7151  cr 10567  1c1 10569   < clt 10706  cmin 10901  cn 11667  2c2 11722  cz 12013  cuz 12275   mod cmo 13279  cdvds 15648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645  ax-pre-sup 10646
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-sup 8932  df-inf 8933  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-n0 11928  df-z 12014  df-uz 12276  df-rp 12424  df-fl 13204  df-mod 13280  df-dvds 15649
This theorem is referenced by:  modprm1div  16182  fpprmod  44605  fpprwpprb  44618
  Copyright terms: Public domain W3C validator