| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-dvds | Structured version Visualization version GIF version | ||
| Description: Example for df-dvds 16182: 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015.) |
| Ref | Expression |
|---|---|
| ex-dvds | ⊢ 3 ∥ 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12525 | . . 3 ⊢ 2 ∈ ℤ | |
| 2 | 3z 12526 | . . 3 ⊢ 3 ∈ ℤ | |
| 3 | 6nn 12235 | . . . 4 ⊢ 6 ∈ ℕ | |
| 4 | 3 | nnzi 12517 | . . 3 ⊢ 6 ∈ ℤ |
| 5 | 1, 2, 4 | 3pm3.2i 1340 | . 2 ⊢ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) |
| 6 | 3cn 12227 | . . . 4 ⊢ 3 ∈ ℂ | |
| 7 | 6 | 2timesi 12279 | . . 3 ⊢ (2 · 3) = (3 + 3) |
| 8 | 3p3e6 12293 | . . 3 ⊢ (3 + 3) = 6 | |
| 9 | 7, 8 | eqtri 2752 | . 2 ⊢ (2 · 3) = 6 |
| 10 | dvds0lem 16195 | . 2 ⊢ (((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) ∧ (2 · 3) = 6) → 3 ∥ 6) | |
| 11 | 5, 9, 10 | mp2an 692 | 1 ⊢ 3 ∥ 6 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 + caddc 11031 · cmul 11033 2c2 12201 3c3 12202 6c6 12205 ℤcz 12489 ∥ cdvds 16181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rrecex 11100 ax-cnre 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-z 12490 df-dvds 16182 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |