| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-dvds | Structured version Visualization version GIF version | ||
| Description: Example for df-dvds 16166: 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015.) |
| Ref | Expression |
|---|---|
| ex-dvds | ⊢ 3 ∥ 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12510 | . . 3 ⊢ 2 ∈ ℤ | |
| 2 | 3z 12511 | . . 3 ⊢ 3 ∈ ℤ | |
| 3 | 6nn 12221 | . . . 4 ⊢ 6 ∈ ℕ | |
| 4 | 3 | nnzi 12502 | . . 3 ⊢ 6 ∈ ℤ |
| 5 | 1, 2, 4 | 3pm3.2i 1340 | . 2 ⊢ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) |
| 6 | 3cn 12213 | . . . 4 ⊢ 3 ∈ ℂ | |
| 7 | 6 | 2timesi 12265 | . . 3 ⊢ (2 · 3) = (3 + 3) |
| 8 | 3p3e6 12279 | . . 3 ⊢ (3 + 3) = 6 | |
| 9 | 7, 8 | eqtri 2756 | . 2 ⊢ (2 · 3) = 6 |
| 10 | dvds0lem 16179 | . 2 ⊢ (((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) ∧ (2 · 3) = 6) → 3 ∥ 6) | |
| 11 | 5, 9, 10 | mp2an 692 | 1 ⊢ 3 ∥ 6 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 (class class class)co 7352 + caddc 11016 · cmul 11018 2c2 12187 3c3 12188 6c6 12191 ℤcz 12475 ∥ cdvds 16165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rrecex 11085 ax-cnre 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-z 12476 df-dvds 16166 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |