MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-dvds Structured version   Visualization version   GIF version

Theorem ex-dvds 29574
Description: Example for df-dvds 16180: 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015.)
Assertion
Ref Expression
ex-dvds 3 ∥ 6

Proof of Theorem ex-dvds
StepHypRef Expression
1 2z 12576 . . 3 2 ∈ ℤ
2 3z 12577 . . 3 3 ∈ ℤ
3 6nn 12283 . . . 4 6 ∈ ℕ
43nnzi 12568 . . 3 6 ∈ ℤ
51, 2, 43pm3.2i 1339 . 2 (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ)
6 3cn 12275 . . . 4 3 ∈ ℂ
762timesi 12332 . . 3 (2 · 3) = (3 + 3)
8 3p3e6 12346 . . 3 (3 + 3) = 6
97, 8eqtri 2759 . 2 (2 · 3) = 6
10 dvds0lem 16192 . 2 (((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) ∧ (2 · 3) = 6) → 3 ∥ 6)
115, 9, 10mp2an 690 1 3 ∥ 6
Colors of variables: wff setvar class
Syntax hints:  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5141  (class class class)co 7393   + caddc 11095   · cmul 11097  2c2 12249  3c3 12250  6c6 12253  cz 12540  cdvds 16179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7708  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rrecex 11164  ax-cnre 11165
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-z 12541  df-dvds 16180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator