Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-dvds | Structured version Visualization version GIF version |
Description: Example for df-dvds 15816: 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015.) |
Ref | Expression |
---|---|
ex-dvds | ⊢ 3 ∥ 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12209 | . . 3 ⊢ 2 ∈ ℤ | |
2 | 3z 12210 | . . 3 ⊢ 3 ∈ ℤ | |
3 | 6nn 11919 | . . . 4 ⊢ 6 ∈ ℕ | |
4 | 3 | nnzi 12201 | . . 3 ⊢ 6 ∈ ℤ |
5 | 1, 2, 4 | 3pm3.2i 1341 | . 2 ⊢ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) |
6 | 3cn 11911 | . . . 4 ⊢ 3 ∈ ℂ | |
7 | 6 | 2timesi 11968 | . . 3 ⊢ (2 · 3) = (3 + 3) |
8 | 3p3e6 11982 | . . 3 ⊢ (3 + 3) = 6 | |
9 | 7, 8 | eqtri 2765 | . 2 ⊢ (2 · 3) = 6 |
10 | dvds0lem 15828 | . 2 ⊢ (((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) ∧ (2 · 3) = 6) → 3 ∥ 6) | |
11 | 5, 9, 10 | mp2an 692 | 1 ⊢ 3 ∥ 6 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 (class class class)co 7213 + caddc 10732 · cmul 10734 2c2 11885 3c3 11886 6c6 11889 ℤcz 12176 ∥ cdvds 15815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rrecex 10801 ax-cnre 10802 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-z 12177 df-dvds 15816 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |