| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-dvds | Structured version Visualization version GIF version | ||
| Description: Example for df-dvds 16230: 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015.) |
| Ref | Expression |
|---|---|
| ex-dvds | ⊢ 3 ∥ 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12572 | . . 3 ⊢ 2 ∈ ℤ | |
| 2 | 3z 12573 | . . 3 ⊢ 3 ∈ ℤ | |
| 3 | 6nn 12282 | . . . 4 ⊢ 6 ∈ ℕ | |
| 4 | 3 | nnzi 12564 | . . 3 ⊢ 6 ∈ ℤ |
| 5 | 1, 2, 4 | 3pm3.2i 1340 | . 2 ⊢ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) |
| 6 | 3cn 12274 | . . . 4 ⊢ 3 ∈ ℂ | |
| 7 | 6 | 2timesi 12326 | . . 3 ⊢ (2 · 3) = (3 + 3) |
| 8 | 3p3e6 12340 | . . 3 ⊢ (3 + 3) = 6 | |
| 9 | 7, 8 | eqtri 2753 | . 2 ⊢ (2 · 3) = 6 |
| 10 | dvds0lem 16243 | . 2 ⊢ (((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) ∧ (2 · 3) = 6) → 3 ∥ 6) | |
| 11 | 5, 9, 10 | mp2an 692 | 1 ⊢ 3 ∥ 6 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 + caddc 11078 · cmul 11080 2c2 12248 3c3 12249 6c6 12252 ℤcz 12536 ∥ cdvds 16229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rrecex 11147 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-z 12537 df-dvds 16230 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |