Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-dvds | Structured version Visualization version GIF version |
Description: Example for df-dvds 15892: 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015.) |
Ref | Expression |
---|---|
ex-dvds | ⊢ 3 ∥ 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12282 | . . 3 ⊢ 2 ∈ ℤ | |
2 | 3z 12283 | . . 3 ⊢ 3 ∈ ℤ | |
3 | 6nn 11992 | . . . 4 ⊢ 6 ∈ ℕ | |
4 | 3 | nnzi 12274 | . . 3 ⊢ 6 ∈ ℤ |
5 | 1, 2, 4 | 3pm3.2i 1337 | . 2 ⊢ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) |
6 | 3cn 11984 | . . . 4 ⊢ 3 ∈ ℂ | |
7 | 6 | 2timesi 12041 | . . 3 ⊢ (2 · 3) = (3 + 3) |
8 | 3p3e6 12055 | . . 3 ⊢ (3 + 3) = 6 | |
9 | 7, 8 | eqtri 2766 | . 2 ⊢ (2 · 3) = 6 |
10 | dvds0lem 15904 | . 2 ⊢ (((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) ∧ (2 · 3) = 6) → 3 ∥ 6) | |
11 | 5, 9, 10 | mp2an 688 | 1 ⊢ 3 ∥ 6 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 + caddc 10805 · cmul 10807 2c2 11958 3c3 11959 6c6 11962 ℤcz 12249 ∥ cdvds 15891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rrecex 10874 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-z 12250 df-dvds 15892 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |