Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inductionexd Structured version   Visualization version   GIF version

Theorem inductionexd 40858
Description: Simple induction example. (Contributed by Stanislas Polu, 9-Mar-2020.)
Assertion
Ref Expression
inductionexd (𝑁 ∈ ℕ → 3 ∥ ((4↑𝑁) + 5))

Proof of Theorem inductionexd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7143 . . . 4 (𝑘 = 1 → (4↑𝑘) = (4↑1))
21oveq1d 7150 . . 3 (𝑘 = 1 → ((4↑𝑘) + 5) = ((4↑1) + 5))
32breq2d 5042 . 2 (𝑘 = 1 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑1) + 5)))
4 oveq2 7143 . . . 4 (𝑘 = 𝑛 → (4↑𝑘) = (4↑𝑛))
54oveq1d 7150 . . 3 (𝑘 = 𝑛 → ((4↑𝑘) + 5) = ((4↑𝑛) + 5))
65breq2d 5042 . 2 (𝑘 = 𝑛 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑𝑛) + 5)))
7 oveq2 7143 . . . 4 (𝑘 = (𝑛 + 1) → (4↑𝑘) = (4↑(𝑛 + 1)))
87oveq1d 7150 . . 3 (𝑘 = (𝑛 + 1) → ((4↑𝑘) + 5) = ((4↑(𝑛 + 1)) + 5))
98breq2d 5042 . 2 (𝑘 = (𝑛 + 1) → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑(𝑛 + 1)) + 5)))
10 oveq2 7143 . . . 4 (𝑘 = 𝑁 → (4↑𝑘) = (4↑𝑁))
1110oveq1d 7150 . . 3 (𝑘 = 𝑁 → ((4↑𝑘) + 5) = ((4↑𝑁) + 5))
1211breq2d 5042 . 2 (𝑘 = 𝑁 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑𝑁) + 5)))
13 3z 12003 . . . 4 3 ∈ ℤ
14 4z 12004 . . . . . 6 4 ∈ ℤ
15 1nn0 11901 . . . . . 6 1 ∈ ℕ0
16 zexpcl 13440 . . . . . 6 ((4 ∈ ℤ ∧ 1 ∈ ℕ0) → (4↑1) ∈ ℤ)
1714, 15, 16mp2an 691 . . . . 5 (4↑1) ∈ ℤ
18 5nn 11711 . . . . . 6 5 ∈ ℕ
1918nnzi 11994 . . . . 5 5 ∈ ℤ
20 zaddcl 12010 . . . . 5 (((4↑1) ∈ ℤ ∧ 5 ∈ ℤ) → ((4↑1) + 5) ∈ ℤ)
2117, 19, 20mp2an 691 . . . 4 ((4↑1) + 5) ∈ ℤ
2213, 13, 213pm3.2i 1336 . . 3 (3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ((4↑1) + 5) ∈ ℤ)
23 3t3e9 11792 . . . 4 (3 · 3) = 9
24 4nn0 11904 . . . . . . 7 4 ∈ ℕ0
2524numexp1 16403 . . . . . 6 (4↑1) = 4
2625oveq1i 7145 . . . . 5 ((4↑1) + 5) = (4 + 5)
27 5cn 11713 . . . . . 6 5 ∈ ℂ
28 4cn 11710 . . . . . 6 4 ∈ ℂ
29 5p4e9 11783 . . . . . 6 (5 + 4) = 9
3027, 28, 29addcomli 10821 . . . . 5 (4 + 5) = 9
3126, 30eqtri 2821 . . . 4 ((4↑1) + 5) = 9
3223, 31eqtr4i 2824 . . 3 (3 · 3) = ((4↑1) + 5)
33 dvds0lem 15612 . . 3 (((3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ((4↑1) + 5) ∈ ℤ) ∧ (3 · 3) = ((4↑1) + 5)) → 3 ∥ ((4↑1) + 5))
3422, 32, 33mp2an 691 . 2 3 ∥ ((4↑1) + 5)
3513a1i 11 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∈ ℤ)
36 4nn 11708 . . . . . . . . . . 11 4 ∈ ℕ
3736a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 4 ∈ ℕ)
38 nnnn0 11892 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
3937, 38nnexpcld 13602 . . . . . . . . 9 (𝑛 ∈ ℕ → (4↑𝑛) ∈ ℕ)
4039nnzd 12074 . . . . . . . 8 (𝑛 ∈ ℕ → (4↑𝑛) ∈ ℤ)
4140adantr 484 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → (4↑𝑛) ∈ ℤ)
4219a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 5 ∈ ℤ)
4341, 42zaddcld 12079 . . . . . 6 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → ((4↑𝑛) + 5) ∈ ℤ)
4414a1i 11 . . . . . 6 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 4 ∈ ℤ)
45 simpr 488 . . . . . 6 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ ((4↑𝑛) + 5))
4635, 43, 44, 45dvdsmultr1d 15640 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ (((4↑𝑛) + 5) · 4))
47 dvdsmul1 15623 . . . . . . 7 ((3 ∈ ℤ ∧ 5 ∈ ℤ) → 3 ∥ (3 · 5))
4813, 19, 47mp2an 691 . . . . . 6 3 ∥ (3 · 5)
4948a1i 11 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ (3 · 5))
5043, 44zmulcld 12081 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → (((4↑𝑛) + 5) · 4) ∈ ℤ)
5135, 42zmulcld 12081 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → (3 · 5) ∈ ℤ)
5235, 46, 49, 50, 51dvds2subd 15637 . . . 4 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ ((((4↑𝑛) + 5) · 4) − (3 · 5)))
5339nncnd 11641 . . . . . . . 8 (𝑛 ∈ ℕ → (4↑𝑛) ∈ ℂ)
5427a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 5 ∈ ℂ)
5528a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 4 ∈ ℂ)
5653, 54, 55adddird 10655 . . . . . . 7 (𝑛 ∈ ℕ → (((4↑𝑛) + 5) · 4) = (((4↑𝑛) · 4) + (5 · 4)))
5756oveq1d 7150 . . . . . 6 (𝑛 ∈ ℕ → ((((4↑𝑛) + 5) · 4) − 15) = ((((4↑𝑛) · 4) + (5 · 4)) − 15))
58 3cn 11706 . . . . . . . . 9 3 ∈ ℂ
59 5t3e15 12187 . . . . . . . . 9 (5 · 3) = 15
6027, 58, 59mulcomli 10639 . . . . . . . 8 (3 · 5) = 15
6160a1i 11 . . . . . . 7 (𝑛 ∈ ℕ → (3 · 5) = 15)
6261oveq2d 7151 . . . . . 6 (𝑛 ∈ ℕ → ((((4↑𝑛) + 5) · 4) − (3 · 5)) = ((((4↑𝑛) + 5) · 4) − 15))
6355, 38expp1d 13507 . . . . . . . 8 (𝑛 ∈ ℕ → (4↑(𝑛 + 1)) = ((4↑𝑛) · 4))
64 ax-1cn 10584 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
65 3p1e4 11770 . . . . . . . . . . . . . . . 16 (3 + 1) = 4
6658, 64, 65addcomli 10821 . . . . . . . . . . . . . . 15 (1 + 3) = 4
6766eqcomi 2807 . . . . . . . . . . . . . 14 4 = (1 + 3)
6867oveq1i 7145 . . . . . . . . . . . . 13 (4 − 3) = ((1 + 3) − 3)
6964, 58pncan3oi 10891 . . . . . . . . . . . . 13 ((1 + 3) − 3) = 1
7068, 69eqtri 2821 . . . . . . . . . . . 12 (4 − 3) = 1
7170oveq2i 7146 . . . . . . . . . . 11 (5 · (4 − 3)) = (5 · 1)
7227, 28, 58subdii 11078 . . . . . . . . . . 11 (5 · (4 − 3)) = ((5 · 4) − (5 · 3))
7327mulid1i 10634 . . . . . . . . . . 11 (5 · 1) = 5
7471, 72, 733eqtr3ri 2830 . . . . . . . . . 10 5 = ((5 · 4) − (5 · 3))
7559eqcomi 2807 . . . . . . . . . . 11 15 = (5 · 3)
7675oveq2i 7146 . . . . . . . . . 10 ((5 · 4) − 15) = ((5 · 4) − (5 · 3))
7774, 76eqtr4i 2824 . . . . . . . . 9 5 = ((5 · 4) − 15)
7877a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 5 = ((5 · 4) − 15))
7963, 78oveq12d 7153 . . . . . . 7 (𝑛 ∈ ℕ → ((4↑(𝑛 + 1)) + 5) = (((4↑𝑛) · 4) + ((5 · 4) − 15)))
8053, 55mulcld 10650 . . . . . . . 8 (𝑛 ∈ ℕ → ((4↑𝑛) · 4) ∈ ℂ)
8154, 55mulcld 10650 . . . . . . . 8 (𝑛 ∈ ℕ → (5 · 4) ∈ ℂ)
82 5nn0 11905 . . . . . . . . . . 11 5 ∈ ℕ0
8315, 82deccl 12101 . . . . . . . . . 10 15 ∈ ℕ0
8483nn0cni 11897 . . . . . . . . 9 15 ∈ ℂ
8584a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 15 ∈ ℂ)
8680, 81, 85addsubassd 11006 . . . . . . 7 (𝑛 ∈ ℕ → ((((4↑𝑛) · 4) + (5 · 4)) − 15) = (((4↑𝑛) · 4) + ((5 · 4) − 15)))
8779, 86eqtr4d 2836 . . . . . 6 (𝑛 ∈ ℕ → ((4↑(𝑛 + 1)) + 5) = ((((4↑𝑛) · 4) + (5 · 4)) − 15))
8857, 62, 873eqtr4rd 2844 . . . . 5 (𝑛 ∈ ℕ → ((4↑(𝑛 + 1)) + 5) = ((((4↑𝑛) + 5) · 4) − (3 · 5)))
8988adantr 484 . . . 4 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → ((4↑(𝑛 + 1)) + 5) = ((((4↑𝑛) + 5) · 4) − (3 · 5)))
9052, 89breqtrrd 5058 . . 3 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ ((4↑(𝑛 + 1)) + 5))
9190ex 416 . 2 (𝑛 ∈ ℕ → (3 ∥ ((4↑𝑛) + 5) → 3 ∥ ((4↑(𝑛 + 1)) + 5)))
923, 6, 9, 12, 34, 91nnind 11643 1 (𝑁 ∈ ℕ → 3 ∥ ((4↑𝑁) + 5))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5030  (class class class)co 7135  cc 10524  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  cn 11625  3c3 11681  4c4 11682  5c5 11683  9c9 11687  0cn0 11885  cz 11969  cdc 12086  cexp 13425  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-seq 13365  df-exp 13426  df-dvds 15600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator