Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . 4
⊢ (𝑘 = 1 → (4↑𝑘) = (4↑1)) |
2 | 1 | oveq1d 7270 |
. . 3
⊢ (𝑘 = 1 → ((4↑𝑘) + 5) = ((4↑1) +
5)) |
3 | 2 | breq2d 5082 |
. 2
⊢ (𝑘 = 1 → (3 ∥
((4↑𝑘) + 5) ↔ 3
∥ ((4↑1) + 5))) |
4 | | oveq2 7263 |
. . . 4
⊢ (𝑘 = 𝑛 → (4↑𝑘) = (4↑𝑛)) |
5 | 4 | oveq1d 7270 |
. . 3
⊢ (𝑘 = 𝑛 → ((4↑𝑘) + 5) = ((4↑𝑛) + 5)) |
6 | 5 | breq2d 5082 |
. 2
⊢ (𝑘 = 𝑛 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥
((4↑𝑛) +
5))) |
7 | | oveq2 7263 |
. . . 4
⊢ (𝑘 = (𝑛 + 1) → (4↑𝑘) = (4↑(𝑛 + 1))) |
8 | 7 | oveq1d 7270 |
. . 3
⊢ (𝑘 = (𝑛 + 1) → ((4↑𝑘) + 5) = ((4↑(𝑛 + 1)) + 5)) |
9 | 8 | breq2d 5082 |
. 2
⊢ (𝑘 = (𝑛 + 1) → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥
((4↑(𝑛 + 1)) +
5))) |
10 | | oveq2 7263 |
. . . 4
⊢ (𝑘 = 𝑁 → (4↑𝑘) = (4↑𝑁)) |
11 | 10 | oveq1d 7270 |
. . 3
⊢ (𝑘 = 𝑁 → ((4↑𝑘) + 5) = ((4↑𝑁) + 5)) |
12 | 11 | breq2d 5082 |
. 2
⊢ (𝑘 = 𝑁 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥
((4↑𝑁) +
5))) |
13 | | 3z 12283 |
. . . 4
⊢ 3 ∈
ℤ |
14 | | 4z 12284 |
. . . . . 6
⊢ 4 ∈
ℤ |
15 | | 1nn0 12179 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
16 | | zexpcl 13725 |
. . . . . 6
⊢ ((4
∈ ℤ ∧ 1 ∈ ℕ0) → (4↑1) ∈
ℤ) |
17 | 14, 15, 16 | mp2an 688 |
. . . . 5
⊢
(4↑1) ∈ ℤ |
18 | | 5nn 11989 |
. . . . . 6
⊢ 5 ∈
ℕ |
19 | 18 | nnzi 12274 |
. . . . 5
⊢ 5 ∈
ℤ |
20 | | zaddcl 12290 |
. . . . 5
⊢
(((4↑1) ∈ ℤ ∧ 5 ∈ ℤ) → ((4↑1) +
5) ∈ ℤ) |
21 | 17, 19, 20 | mp2an 688 |
. . . 4
⊢
((4↑1) + 5) ∈ ℤ |
22 | 13, 13, 21 | 3pm3.2i 1337 |
. . 3
⊢ (3 ∈
ℤ ∧ 3 ∈ ℤ ∧ ((4↑1) + 5) ∈
ℤ) |
23 | | 3t3e9 12070 |
. . . 4
⊢ (3
· 3) = 9 |
24 | | 4nn0 12182 |
. . . . . . 7
⊢ 4 ∈
ℕ0 |
25 | 24 | numexp1 16706 |
. . . . . 6
⊢
(4↑1) = 4 |
26 | 25 | oveq1i 7265 |
. . . . 5
⊢
((4↑1) + 5) = (4 + 5) |
27 | | 5cn 11991 |
. . . . . 6
⊢ 5 ∈
ℂ |
28 | | 4cn 11988 |
. . . . . 6
⊢ 4 ∈
ℂ |
29 | | 5p4e9 12061 |
. . . . . 6
⊢ (5 + 4) =
9 |
30 | 27, 28, 29 | addcomli 11097 |
. . . . 5
⊢ (4 + 5) =
9 |
31 | 26, 30 | eqtri 2766 |
. . . 4
⊢
((4↑1) + 5) = 9 |
32 | 23, 31 | eqtr4i 2769 |
. . 3
⊢ (3
· 3) = ((4↑1) + 5) |
33 | | dvds0lem 15904 |
. . 3
⊢ (((3
∈ ℤ ∧ 3 ∈ ℤ ∧ ((4↑1) + 5) ∈ ℤ)
∧ (3 · 3) = ((4↑1) + 5)) → 3 ∥ ((4↑1) +
5)) |
34 | 22, 32, 33 | mp2an 688 |
. 2
⊢ 3 ∥
((4↑1) + 5) |
35 | 13 | a1i 11 |
. . . . 5
⊢ ((𝑛 ∈ ℕ ∧ 3 ∥
((4↑𝑛) + 5)) → 3
∈ ℤ) |
36 | | 4nn 11986 |
. . . . . . . . . . 11
⊢ 4 ∈
ℕ |
37 | 36 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 4 ∈
ℕ) |
38 | | nnnn0 12170 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
39 | 37, 38 | nnexpcld 13888 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(4↑𝑛) ∈
ℕ) |
40 | 39 | nnzd 12354 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
(4↑𝑛) ∈
ℤ) |
41 | 40 | adantr 480 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 3 ∥
((4↑𝑛) + 5)) →
(4↑𝑛) ∈
ℤ) |
42 | 19 | a1i 11 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 3 ∥
((4↑𝑛) + 5)) → 5
∈ ℤ) |
43 | 41, 42 | zaddcld 12359 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 3 ∥
((4↑𝑛) + 5)) →
((4↑𝑛) + 5) ∈
ℤ) |
44 | 14 | a1i 11 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 3 ∥
((4↑𝑛) + 5)) → 4
∈ ℤ) |
45 | 43, 44 | zmulcld 12361 |
. . . . 5
⊢ ((𝑛 ∈ ℕ ∧ 3 ∥
((4↑𝑛) + 5)) →
(((4↑𝑛) + 5) ·
4) ∈ ℤ) |
46 | 35, 42 | zmulcld 12361 |
. . . . 5
⊢ ((𝑛 ∈ ℕ ∧ 3 ∥
((4↑𝑛) + 5)) → (3
· 5) ∈ ℤ) |
47 | | simpr 484 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ 3 ∥
((4↑𝑛) + 5)) → 3
∥ ((4↑𝑛) +
5)) |
48 | 35, 43, 44, 47 | dvdsmultr1d 15934 |
. . . . 5
⊢ ((𝑛 ∈ ℕ ∧ 3 ∥
((4↑𝑛) + 5)) → 3
∥ (((4↑𝑛) + 5)
· 4)) |
49 | | dvdsmul1 15915 |
. . . . . . 7
⊢ ((3
∈ ℤ ∧ 5 ∈ ℤ) → 3 ∥ (3 ·
5)) |
50 | 13, 19, 49 | mp2an 688 |
. . . . . 6
⊢ 3 ∥
(3 · 5) |
51 | 50 | a1i 11 |
. . . . 5
⊢ ((𝑛 ∈ ℕ ∧ 3 ∥
((4↑𝑛) + 5)) → 3
∥ (3 · 5)) |
52 | 35, 45, 46, 48, 51 | dvds2subd 15930 |
. . . 4
⊢ ((𝑛 ∈ ℕ ∧ 3 ∥
((4↑𝑛) + 5)) → 3
∥ ((((4↑𝑛) + 5)
· 4) − (3 · 5))) |
53 | 39 | nncnd 11919 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
(4↑𝑛) ∈
ℂ) |
54 | 27 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → 5 ∈
ℂ) |
55 | 28 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → 4 ∈
ℂ) |
56 | 53, 54, 55 | adddird 10931 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ →
(((4↑𝑛) + 5) ·
4) = (((4↑𝑛) ·
4) + (5 · 4))) |
57 | 56 | oveq1d 7270 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
((((4↑𝑛) + 5) ·
4) − ;15) = ((((4↑𝑛) · 4) + (5 · 4))
− ;15)) |
58 | | 3cn 11984 |
. . . . . . . . 9
⊢ 3 ∈
ℂ |
59 | | 5t3e15 12467 |
. . . . . . . . 9
⊢ (5
· 3) = ;15 |
60 | 27, 58, 59 | mulcomli 10915 |
. . . . . . . 8
⊢ (3
· 5) = ;15 |
61 | 60 | a1i 11 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → (3
· 5) = ;15) |
62 | 61 | oveq2d 7271 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
((((4↑𝑛) + 5) ·
4) − (3 · 5)) = ((((4↑𝑛) + 5) · 4) − ;15)) |
63 | 55, 38 | expp1d 13793 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
(4↑(𝑛 + 1)) =
((4↑𝑛) ·
4)) |
64 | | ax-1cn 10860 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℂ |
65 | | 3p1e4 12048 |
. . . . . . . . . . . . . . . 16
⊢ (3 + 1) =
4 |
66 | 58, 64, 65 | addcomli 11097 |
. . . . . . . . . . . . . . 15
⊢ (1 + 3) =
4 |
67 | 66 | eqcomi 2747 |
. . . . . . . . . . . . . 14
⊢ 4 = (1 +
3) |
68 | 67 | oveq1i 7265 |
. . . . . . . . . . . . 13
⊢ (4
− 3) = ((1 + 3) − 3) |
69 | 64, 58 | pncan3oi 11167 |
. . . . . . . . . . . . 13
⊢ ((1 + 3)
− 3) = 1 |
70 | 68, 69 | eqtri 2766 |
. . . . . . . . . . . 12
⊢ (4
− 3) = 1 |
71 | 70 | oveq2i 7266 |
. . . . . . . . . . 11
⊢ (5
· (4 − 3)) = (5 · 1) |
72 | 27, 28, 58 | subdii 11354 |
. . . . . . . . . . 11
⊢ (5
· (4 − 3)) = ((5 · 4) − (5 ·
3)) |
73 | 27 | mulid1i 10910 |
. . . . . . . . . . 11
⊢ (5
· 1) = 5 |
74 | 71, 72, 73 | 3eqtr3ri 2775 |
. . . . . . . . . 10
⊢ 5 = ((5
· 4) − (5 · 3)) |
75 | 59 | eqcomi 2747 |
. . . . . . . . . . 11
⊢ ;15 = (5 · 3) |
76 | 75 | oveq2i 7266 |
. . . . . . . . . 10
⊢ ((5
· 4) − ;15) = ((5
· 4) − (5 · 3)) |
77 | 74, 76 | eqtr4i 2769 |
. . . . . . . . 9
⊢ 5 = ((5
· 4) − ;15) |
78 | 77 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → 5 = ((5
· 4) − ;15)) |
79 | 63, 78 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ →
((4↑(𝑛 + 1)) + 5) =
(((4↑𝑛) · 4) +
((5 · 4) − ;15))) |
80 | 53, 55 | mulcld 10926 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
((4↑𝑛) · 4)
∈ ℂ) |
81 | 54, 55 | mulcld 10926 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → (5
· 4) ∈ ℂ) |
82 | | 5nn0 12183 |
. . . . . . . . . . 11
⊢ 5 ∈
ℕ0 |
83 | 15, 82 | deccl 12381 |
. . . . . . . . . 10
⊢ ;15 ∈
ℕ0 |
84 | 83 | nn0cni 12175 |
. . . . . . . . 9
⊢ ;15 ∈ ℂ |
85 | 84 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → ;15 ∈ ℂ) |
86 | 80, 81, 85 | addsubassd 11282 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ →
((((4↑𝑛) · 4) +
(5 · 4)) − ;15) =
(((4↑𝑛) · 4) +
((5 · 4) − ;15))) |
87 | 79, 86 | eqtr4d 2781 |
. . . . . 6
⊢ (𝑛 ∈ ℕ →
((4↑(𝑛 + 1)) + 5) =
((((4↑𝑛) · 4) +
(5 · 4)) − ;15)) |
88 | 57, 62, 87 | 3eqtr4rd 2789 |
. . . . 5
⊢ (𝑛 ∈ ℕ →
((4↑(𝑛 + 1)) + 5) =
((((4↑𝑛) + 5) ·
4) − (3 · 5))) |
89 | 88 | adantr 480 |
. . . 4
⊢ ((𝑛 ∈ ℕ ∧ 3 ∥
((4↑𝑛) + 5)) →
((4↑(𝑛 + 1)) + 5) =
((((4↑𝑛) + 5) ·
4) − (3 · 5))) |
90 | 52, 89 | breqtrrd 5098 |
. . 3
⊢ ((𝑛 ∈ ℕ ∧ 3 ∥
((4↑𝑛) + 5)) → 3
∥ ((4↑(𝑛 + 1)) +
5)) |
91 | 90 | ex 412 |
. 2
⊢ (𝑛 ∈ ℕ → (3
∥ ((4↑𝑛) + 5)
→ 3 ∥ ((4↑(𝑛 + 1)) + 5))) |
92 | 3, 6, 9, 12, 34, 91 | nnind 11921 |
1
⊢ (𝑁 ∈ ℕ → 3 ∥
((4↑𝑁) +
5)) |