Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inductionexd Structured version   Visualization version   GIF version

Theorem inductionexd 43369
Description: Simple induction example. (Contributed by Stanislas Polu, 9-Mar-2020.)
Assertion
Ref Expression
inductionexd (𝑁 ∈ ℕ → 3 ∥ ((4↑𝑁) + 5))

Proof of Theorem inductionexd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7420 . . . 4 (𝑘 = 1 → (4↑𝑘) = (4↑1))
21oveq1d 7427 . . 3 (𝑘 = 1 → ((4↑𝑘) + 5) = ((4↑1) + 5))
32breq2d 5160 . 2 (𝑘 = 1 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑1) + 5)))
4 oveq2 7420 . . . 4 (𝑘 = 𝑛 → (4↑𝑘) = (4↑𝑛))
54oveq1d 7427 . . 3 (𝑘 = 𝑛 → ((4↑𝑘) + 5) = ((4↑𝑛) + 5))
65breq2d 5160 . 2 (𝑘 = 𝑛 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑𝑛) + 5)))
7 oveq2 7420 . . . 4 (𝑘 = (𝑛 + 1) → (4↑𝑘) = (4↑(𝑛 + 1)))
87oveq1d 7427 . . 3 (𝑘 = (𝑛 + 1) → ((4↑𝑘) + 5) = ((4↑(𝑛 + 1)) + 5))
98breq2d 5160 . 2 (𝑘 = (𝑛 + 1) → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑(𝑛 + 1)) + 5)))
10 oveq2 7420 . . . 4 (𝑘 = 𝑁 → (4↑𝑘) = (4↑𝑁))
1110oveq1d 7427 . . 3 (𝑘 = 𝑁 → ((4↑𝑘) + 5) = ((4↑𝑁) + 5))
1211breq2d 5160 . 2 (𝑘 = 𝑁 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑𝑁) + 5)))
13 3z 12602 . . . 4 3 ∈ ℤ
14 4z 12603 . . . . . 6 4 ∈ ℤ
15 1nn0 12495 . . . . . 6 1 ∈ ℕ0
16 zexpcl 14049 . . . . . 6 ((4 ∈ ℤ ∧ 1 ∈ ℕ0) → (4↑1) ∈ ℤ)
1714, 15, 16mp2an 689 . . . . 5 (4↑1) ∈ ℤ
18 5nn 12305 . . . . . 6 5 ∈ ℕ
1918nnzi 12593 . . . . 5 5 ∈ ℤ
20 zaddcl 12609 . . . . 5 (((4↑1) ∈ ℤ ∧ 5 ∈ ℤ) → ((4↑1) + 5) ∈ ℤ)
2117, 19, 20mp2an 689 . . . 4 ((4↑1) + 5) ∈ ℤ
2213, 13, 213pm3.2i 1338 . . 3 (3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ((4↑1) + 5) ∈ ℤ)
23 3t3e9 12386 . . . 4 (3 · 3) = 9
24 4nn0 12498 . . . . . . 7 4 ∈ ℕ0
2524numexp1 17017 . . . . . 6 (4↑1) = 4
2625oveq1i 7422 . . . . 5 ((4↑1) + 5) = (4 + 5)
27 5cn 12307 . . . . . 6 5 ∈ ℂ
28 4cn 12304 . . . . . 6 4 ∈ ℂ
29 5p4e9 12377 . . . . . 6 (5 + 4) = 9
3027, 28, 29addcomli 11413 . . . . 5 (4 + 5) = 9
3126, 30eqtri 2759 . . . 4 ((4↑1) + 5) = 9
3223, 31eqtr4i 2762 . . 3 (3 · 3) = ((4↑1) + 5)
33 dvds0lem 16217 . . 3 (((3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ((4↑1) + 5) ∈ ℤ) ∧ (3 · 3) = ((4↑1) + 5)) → 3 ∥ ((4↑1) + 5))
3422, 32, 33mp2an 689 . 2 3 ∥ ((4↑1) + 5)
3513a1i 11 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∈ ℤ)
36 4nn 12302 . . . . . . . . . . 11 4 ∈ ℕ
3736a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 4 ∈ ℕ)
38 nnnn0 12486 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
3937, 38nnexpcld 14215 . . . . . . . . 9 (𝑛 ∈ ℕ → (4↑𝑛) ∈ ℕ)
4039nnzd 12592 . . . . . . . 8 (𝑛 ∈ ℕ → (4↑𝑛) ∈ ℤ)
4140adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → (4↑𝑛) ∈ ℤ)
4219a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 5 ∈ ℤ)
4341, 42zaddcld 12677 . . . . . 6 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → ((4↑𝑛) + 5) ∈ ℤ)
4414a1i 11 . . . . . 6 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 4 ∈ ℤ)
4543, 44zmulcld 12679 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → (((4↑𝑛) + 5) · 4) ∈ ℤ)
4635, 42zmulcld 12679 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → (3 · 5) ∈ ℤ)
47 simpr 484 . . . . . 6 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ ((4↑𝑛) + 5))
4835, 43, 44, 47dvdsmultr1d 16247 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ (((4↑𝑛) + 5) · 4))
49 dvdsmul1 16228 . . . . . . 7 ((3 ∈ ℤ ∧ 5 ∈ ℤ) → 3 ∥ (3 · 5))
5013, 19, 49mp2an 689 . . . . . 6 3 ∥ (3 · 5)
5150a1i 11 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ (3 · 5))
5235, 45, 46, 48, 51dvds2subd 16243 . . . 4 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ ((((4↑𝑛) + 5) · 4) − (3 · 5)))
5339nncnd 12235 . . . . . . . 8 (𝑛 ∈ ℕ → (4↑𝑛) ∈ ℂ)
5427a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 5 ∈ ℂ)
5528a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 4 ∈ ℂ)
5653, 54, 55adddird 11246 . . . . . . 7 (𝑛 ∈ ℕ → (((4↑𝑛) + 5) · 4) = (((4↑𝑛) · 4) + (5 · 4)))
5756oveq1d 7427 . . . . . 6 (𝑛 ∈ ℕ → ((((4↑𝑛) + 5) · 4) − 15) = ((((4↑𝑛) · 4) + (5 · 4)) − 15))
58 3cn 12300 . . . . . . . . 9 3 ∈ ℂ
59 5t3e15 12785 . . . . . . . . 9 (5 · 3) = 15
6027, 58, 59mulcomli 11230 . . . . . . . 8 (3 · 5) = 15
6160a1i 11 . . . . . . 7 (𝑛 ∈ ℕ → (3 · 5) = 15)
6261oveq2d 7428 . . . . . 6 (𝑛 ∈ ℕ → ((((4↑𝑛) + 5) · 4) − (3 · 5)) = ((((4↑𝑛) + 5) · 4) − 15))
6355, 38expp1d 14119 . . . . . . . 8 (𝑛 ∈ ℕ → (4↑(𝑛 + 1)) = ((4↑𝑛) · 4))
64 ax-1cn 11174 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
65 3p1e4 12364 . . . . . . . . . . . . . . . 16 (3 + 1) = 4
6658, 64, 65addcomli 11413 . . . . . . . . . . . . . . 15 (1 + 3) = 4
6766eqcomi 2740 . . . . . . . . . . . . . 14 4 = (1 + 3)
6867oveq1i 7422 . . . . . . . . . . . . 13 (4 − 3) = ((1 + 3) − 3)
6964, 58pncan3oi 11483 . . . . . . . . . . . . 13 ((1 + 3) − 3) = 1
7068, 69eqtri 2759 . . . . . . . . . . . 12 (4 − 3) = 1
7170oveq2i 7423 . . . . . . . . . . 11 (5 · (4 − 3)) = (5 · 1)
7227, 28, 58subdii 11670 . . . . . . . . . . 11 (5 · (4 − 3)) = ((5 · 4) − (5 · 3))
7327mulridi 11225 . . . . . . . . . . 11 (5 · 1) = 5
7471, 72, 733eqtr3ri 2768 . . . . . . . . . 10 5 = ((5 · 4) − (5 · 3))
7559eqcomi 2740 . . . . . . . . . . 11 15 = (5 · 3)
7675oveq2i 7423 . . . . . . . . . 10 ((5 · 4) − 15) = ((5 · 4) − (5 · 3))
7774, 76eqtr4i 2762 . . . . . . . . 9 5 = ((5 · 4) − 15)
7877a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 5 = ((5 · 4) − 15))
7963, 78oveq12d 7430 . . . . . . 7 (𝑛 ∈ ℕ → ((4↑(𝑛 + 1)) + 5) = (((4↑𝑛) · 4) + ((5 · 4) − 15)))
8053, 55mulcld 11241 . . . . . . . 8 (𝑛 ∈ ℕ → ((4↑𝑛) · 4) ∈ ℂ)
8154, 55mulcld 11241 . . . . . . . 8 (𝑛 ∈ ℕ → (5 · 4) ∈ ℂ)
82 5nn0 12499 . . . . . . . . . . 11 5 ∈ ℕ0
8315, 82deccl 12699 . . . . . . . . . 10 15 ∈ ℕ0
8483nn0cni 12491 . . . . . . . . 9 15 ∈ ℂ
8584a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 15 ∈ ℂ)
8680, 81, 85addsubassd 11598 . . . . . . 7 (𝑛 ∈ ℕ → ((((4↑𝑛) · 4) + (5 · 4)) − 15) = (((4↑𝑛) · 4) + ((5 · 4) − 15)))
8779, 86eqtr4d 2774 . . . . . 6 (𝑛 ∈ ℕ → ((4↑(𝑛 + 1)) + 5) = ((((4↑𝑛) · 4) + (5 · 4)) − 15))
8857, 62, 873eqtr4rd 2782 . . . . 5 (𝑛 ∈ ℕ → ((4↑(𝑛 + 1)) + 5) = ((((4↑𝑛) + 5) · 4) − (3 · 5)))
8988adantr 480 . . . 4 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → ((4↑(𝑛 + 1)) + 5) = ((((4↑𝑛) + 5) · 4) − (3 · 5)))
9052, 89breqtrrd 5176 . . 3 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ ((4↑(𝑛 + 1)) + 5))
9190ex 412 . 2 (𝑛 ∈ ℕ → (3 ∥ ((4↑𝑛) + 5) → 3 ∥ ((4↑(𝑛 + 1)) + 5)))
923, 6, 9, 12, 34, 91nnind 12237 1 (𝑁 ∈ ℕ → 3 ∥ ((4↑𝑁) + 5))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5148  (class class class)co 7412  cc 11114  1c1 11117   + caddc 11119   · cmul 11121  cmin 11451  cn 12219  3c3 12275  4c4 12276  5c5 12277  9c9 12281  0cn0 12479  cz 12565  cdc 12684  cexp 14034  cdvds 16204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-seq 13974  df-exp 14035  df-dvds 16205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator