Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inductionexd Structured version   Visualization version   GIF version

Theorem inductionexd 44272
Description: Simple induction example. (Contributed by Stanislas Polu, 9-Mar-2020.)
Assertion
Ref Expression
inductionexd (𝑁 ∈ ℕ → 3 ∥ ((4↑𝑁) + 5))

Proof of Theorem inductionexd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7360 . . . 4 (𝑘 = 1 → (4↑𝑘) = (4↑1))
21oveq1d 7367 . . 3 (𝑘 = 1 → ((4↑𝑘) + 5) = ((4↑1) + 5))
32breq2d 5105 . 2 (𝑘 = 1 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑1) + 5)))
4 oveq2 7360 . . . 4 (𝑘 = 𝑛 → (4↑𝑘) = (4↑𝑛))
54oveq1d 7367 . . 3 (𝑘 = 𝑛 → ((4↑𝑘) + 5) = ((4↑𝑛) + 5))
65breq2d 5105 . 2 (𝑘 = 𝑛 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑𝑛) + 5)))
7 oveq2 7360 . . . 4 (𝑘 = (𝑛 + 1) → (4↑𝑘) = (4↑(𝑛 + 1)))
87oveq1d 7367 . . 3 (𝑘 = (𝑛 + 1) → ((4↑𝑘) + 5) = ((4↑(𝑛 + 1)) + 5))
98breq2d 5105 . 2 (𝑘 = (𝑛 + 1) → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑(𝑛 + 1)) + 5)))
10 oveq2 7360 . . . 4 (𝑘 = 𝑁 → (4↑𝑘) = (4↑𝑁))
1110oveq1d 7367 . . 3 (𝑘 = 𝑁 → ((4↑𝑘) + 5) = ((4↑𝑁) + 5))
1211breq2d 5105 . 2 (𝑘 = 𝑁 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑𝑁) + 5)))
13 3z 12511 . . . 4 3 ∈ ℤ
14 4z 12512 . . . . . 6 4 ∈ ℤ
15 1nn0 12404 . . . . . 6 1 ∈ ℕ0
16 zexpcl 13985 . . . . . 6 ((4 ∈ ℤ ∧ 1 ∈ ℕ0) → (4↑1) ∈ ℤ)
1714, 15, 16mp2an 692 . . . . 5 (4↑1) ∈ ℤ
18 5nn 12218 . . . . . 6 5 ∈ ℕ
1918nnzi 12502 . . . . 5 5 ∈ ℤ
20 zaddcl 12518 . . . . 5 (((4↑1) ∈ ℤ ∧ 5 ∈ ℤ) → ((4↑1) + 5) ∈ ℤ)
2117, 19, 20mp2an 692 . . . 4 ((4↑1) + 5) ∈ ℤ
2213, 13, 213pm3.2i 1340 . . 3 (3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ((4↑1) + 5) ∈ ℤ)
23 3t3e9 12294 . . . 4 (3 · 3) = 9
24 4nn0 12407 . . . . . . 7 4 ∈ ℕ0
2524numexp1 16990 . . . . . 6 (4↑1) = 4
2625oveq1i 7362 . . . . 5 ((4↑1) + 5) = (4 + 5)
27 5cn 12220 . . . . . 6 5 ∈ ℂ
28 4cn 12217 . . . . . 6 4 ∈ ℂ
29 5p4e9 12285 . . . . . 6 (5 + 4) = 9
3027, 28, 29addcomli 11312 . . . . 5 (4 + 5) = 9
3126, 30eqtri 2756 . . . 4 ((4↑1) + 5) = 9
3223, 31eqtr4i 2759 . . 3 (3 · 3) = ((4↑1) + 5)
33 dvds0lem 16179 . . 3 (((3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ((4↑1) + 5) ∈ ℤ) ∧ (3 · 3) = ((4↑1) + 5)) → 3 ∥ ((4↑1) + 5))
3422, 32, 33mp2an 692 . 2 3 ∥ ((4↑1) + 5)
3513a1i 11 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∈ ℤ)
36 4nn 12215 . . . . . . . . . . 11 4 ∈ ℕ
3736a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 4 ∈ ℕ)
38 nnnn0 12395 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
3937, 38nnexpcld 14154 . . . . . . . . 9 (𝑛 ∈ ℕ → (4↑𝑛) ∈ ℕ)
4039nnzd 12501 . . . . . . . 8 (𝑛 ∈ ℕ → (4↑𝑛) ∈ ℤ)
4140adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → (4↑𝑛) ∈ ℤ)
4219a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 5 ∈ ℤ)
4341, 42zaddcld 12587 . . . . . 6 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → ((4↑𝑛) + 5) ∈ ℤ)
4414a1i 11 . . . . . 6 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 4 ∈ ℤ)
4543, 44zmulcld 12589 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → (((4↑𝑛) + 5) · 4) ∈ ℤ)
4635, 42zmulcld 12589 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → (3 · 5) ∈ ℤ)
47 simpr 484 . . . . . 6 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ ((4↑𝑛) + 5))
4835, 43, 44, 47dvdsmultr1d 16210 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ (((4↑𝑛) + 5) · 4))
49 dvdsmul1 16190 . . . . . . 7 ((3 ∈ ℤ ∧ 5 ∈ ℤ) → 3 ∥ (3 · 5))
5013, 19, 49mp2an 692 . . . . . 6 3 ∥ (3 · 5)
5150a1i 11 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ (3 · 5))
5235, 45, 46, 48, 51dvds2subd 16206 . . . 4 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ ((((4↑𝑛) + 5) · 4) − (3 · 5)))
5339nncnd 12148 . . . . . . . 8 (𝑛 ∈ ℕ → (4↑𝑛) ∈ ℂ)
5427a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 5 ∈ ℂ)
5528a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 4 ∈ ℂ)
5653, 54, 55adddird 11144 . . . . . . 7 (𝑛 ∈ ℕ → (((4↑𝑛) + 5) · 4) = (((4↑𝑛) · 4) + (5 · 4)))
5756oveq1d 7367 . . . . . 6 (𝑛 ∈ ℕ → ((((4↑𝑛) + 5) · 4) − 15) = ((((4↑𝑛) · 4) + (5 · 4)) − 15))
58 3cn 12213 . . . . . . . . 9 3 ∈ ℂ
59 5t3e15 12695 . . . . . . . . 9 (5 · 3) = 15
6027, 58, 59mulcomli 11128 . . . . . . . 8 (3 · 5) = 15
6160a1i 11 . . . . . . 7 (𝑛 ∈ ℕ → (3 · 5) = 15)
6261oveq2d 7368 . . . . . 6 (𝑛 ∈ ℕ → ((((4↑𝑛) + 5) · 4) − (3 · 5)) = ((((4↑𝑛) + 5) · 4) − 15))
6355, 38expp1d 14056 . . . . . . . 8 (𝑛 ∈ ℕ → (4↑(𝑛 + 1)) = ((4↑𝑛) · 4))
64 ax-1cn 11071 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
65 3p1e4 12272 . . . . . . . . . . . . . . . 16 (3 + 1) = 4
6658, 64, 65addcomli 11312 . . . . . . . . . . . . . . 15 (1 + 3) = 4
6766eqcomi 2742 . . . . . . . . . . . . . 14 4 = (1 + 3)
6867oveq1i 7362 . . . . . . . . . . . . 13 (4 − 3) = ((1 + 3) − 3)
6964, 58pncan3oi 11383 . . . . . . . . . . . . 13 ((1 + 3) − 3) = 1
7068, 69eqtri 2756 . . . . . . . . . . . 12 (4 − 3) = 1
7170oveq2i 7363 . . . . . . . . . . 11 (5 · (4 − 3)) = (5 · 1)
7227, 28, 58subdii 11573 . . . . . . . . . . 11 (5 · (4 − 3)) = ((5 · 4) − (5 · 3))
7327mulridi 11123 . . . . . . . . . . 11 (5 · 1) = 5
7471, 72, 733eqtr3ri 2765 . . . . . . . . . 10 5 = ((5 · 4) − (5 · 3))
7559eqcomi 2742 . . . . . . . . . . 11 15 = (5 · 3)
7675oveq2i 7363 . . . . . . . . . 10 ((5 · 4) − 15) = ((5 · 4) − (5 · 3))
7774, 76eqtr4i 2759 . . . . . . . . 9 5 = ((5 · 4) − 15)
7877a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 5 = ((5 · 4) − 15))
7963, 78oveq12d 7370 . . . . . . 7 (𝑛 ∈ ℕ → ((4↑(𝑛 + 1)) + 5) = (((4↑𝑛) · 4) + ((5 · 4) − 15)))
8053, 55mulcld 11139 . . . . . . . 8 (𝑛 ∈ ℕ → ((4↑𝑛) · 4) ∈ ℂ)
8154, 55mulcld 11139 . . . . . . . 8 (𝑛 ∈ ℕ → (5 · 4) ∈ ℂ)
82 5nn0 12408 . . . . . . . . . . 11 5 ∈ ℕ0
8315, 82deccl 12609 . . . . . . . . . 10 15 ∈ ℕ0
8483nn0cni 12400 . . . . . . . . 9 15 ∈ ℂ
8584a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 15 ∈ ℂ)
8680, 81, 85addsubassd 11499 . . . . . . 7 (𝑛 ∈ ℕ → ((((4↑𝑛) · 4) + (5 · 4)) − 15) = (((4↑𝑛) · 4) + ((5 · 4) − 15)))
8779, 86eqtr4d 2771 . . . . . 6 (𝑛 ∈ ℕ → ((4↑(𝑛 + 1)) + 5) = ((((4↑𝑛) · 4) + (5 · 4)) − 15))
8857, 62, 873eqtr4rd 2779 . . . . 5 (𝑛 ∈ ℕ → ((4↑(𝑛 + 1)) + 5) = ((((4↑𝑛) + 5) · 4) − (3 · 5)))
8988adantr 480 . . . 4 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → ((4↑(𝑛 + 1)) + 5) = ((((4↑𝑛) + 5) · 4) − (3 · 5)))
9052, 89breqtrrd 5121 . . 3 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ ((4↑(𝑛 + 1)) + 5))
9190ex 412 . 2 (𝑛 ∈ ℕ → (3 ∥ ((4↑𝑛) + 5) → 3 ∥ ((4↑(𝑛 + 1)) + 5)))
923, 6, 9, 12, 34, 91nnind 12150 1 (𝑁 ∈ ℕ → 3 ∥ ((4↑𝑁) + 5))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5093  (class class class)co 7352  cc 11011  1c1 11014   + caddc 11016   · cmul 11018  cmin 11351  cn 12132  3c3 12188  4c4 12189  5c5 12190  9c9 12194  0cn0 12388  cz 12475  cdc 12594  cexp 13970  cdvds 16165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-seq 13911  df-exp 13971  df-dvds 16166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator