Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inductionexd Structured version   Visualization version   GIF version

Theorem inductionexd 41654
Description: Simple induction example. (Contributed by Stanislas Polu, 9-Mar-2020.)
Assertion
Ref Expression
inductionexd (𝑁 ∈ ℕ → 3 ∥ ((4↑𝑁) + 5))

Proof of Theorem inductionexd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . 4 (𝑘 = 1 → (4↑𝑘) = (4↑1))
21oveq1d 7270 . . 3 (𝑘 = 1 → ((4↑𝑘) + 5) = ((4↑1) + 5))
32breq2d 5082 . 2 (𝑘 = 1 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑1) + 5)))
4 oveq2 7263 . . . 4 (𝑘 = 𝑛 → (4↑𝑘) = (4↑𝑛))
54oveq1d 7270 . . 3 (𝑘 = 𝑛 → ((4↑𝑘) + 5) = ((4↑𝑛) + 5))
65breq2d 5082 . 2 (𝑘 = 𝑛 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑𝑛) + 5)))
7 oveq2 7263 . . . 4 (𝑘 = (𝑛 + 1) → (4↑𝑘) = (4↑(𝑛 + 1)))
87oveq1d 7270 . . 3 (𝑘 = (𝑛 + 1) → ((4↑𝑘) + 5) = ((4↑(𝑛 + 1)) + 5))
98breq2d 5082 . 2 (𝑘 = (𝑛 + 1) → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑(𝑛 + 1)) + 5)))
10 oveq2 7263 . . . 4 (𝑘 = 𝑁 → (4↑𝑘) = (4↑𝑁))
1110oveq1d 7270 . . 3 (𝑘 = 𝑁 → ((4↑𝑘) + 5) = ((4↑𝑁) + 5))
1211breq2d 5082 . 2 (𝑘 = 𝑁 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑𝑁) + 5)))
13 3z 12283 . . . 4 3 ∈ ℤ
14 4z 12284 . . . . . 6 4 ∈ ℤ
15 1nn0 12179 . . . . . 6 1 ∈ ℕ0
16 zexpcl 13725 . . . . . 6 ((4 ∈ ℤ ∧ 1 ∈ ℕ0) → (4↑1) ∈ ℤ)
1714, 15, 16mp2an 688 . . . . 5 (4↑1) ∈ ℤ
18 5nn 11989 . . . . . 6 5 ∈ ℕ
1918nnzi 12274 . . . . 5 5 ∈ ℤ
20 zaddcl 12290 . . . . 5 (((4↑1) ∈ ℤ ∧ 5 ∈ ℤ) → ((4↑1) + 5) ∈ ℤ)
2117, 19, 20mp2an 688 . . . 4 ((4↑1) + 5) ∈ ℤ
2213, 13, 213pm3.2i 1337 . . 3 (3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ((4↑1) + 5) ∈ ℤ)
23 3t3e9 12070 . . . 4 (3 · 3) = 9
24 4nn0 12182 . . . . . . 7 4 ∈ ℕ0
2524numexp1 16706 . . . . . 6 (4↑1) = 4
2625oveq1i 7265 . . . . 5 ((4↑1) + 5) = (4 + 5)
27 5cn 11991 . . . . . 6 5 ∈ ℂ
28 4cn 11988 . . . . . 6 4 ∈ ℂ
29 5p4e9 12061 . . . . . 6 (5 + 4) = 9
3027, 28, 29addcomli 11097 . . . . 5 (4 + 5) = 9
3126, 30eqtri 2766 . . . 4 ((4↑1) + 5) = 9
3223, 31eqtr4i 2769 . . 3 (3 · 3) = ((4↑1) + 5)
33 dvds0lem 15904 . . 3 (((3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ((4↑1) + 5) ∈ ℤ) ∧ (3 · 3) = ((4↑1) + 5)) → 3 ∥ ((4↑1) + 5))
3422, 32, 33mp2an 688 . 2 3 ∥ ((4↑1) + 5)
3513a1i 11 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∈ ℤ)
36 4nn 11986 . . . . . . . . . . 11 4 ∈ ℕ
3736a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 4 ∈ ℕ)
38 nnnn0 12170 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
3937, 38nnexpcld 13888 . . . . . . . . 9 (𝑛 ∈ ℕ → (4↑𝑛) ∈ ℕ)
4039nnzd 12354 . . . . . . . 8 (𝑛 ∈ ℕ → (4↑𝑛) ∈ ℤ)
4140adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → (4↑𝑛) ∈ ℤ)
4219a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 5 ∈ ℤ)
4341, 42zaddcld 12359 . . . . . 6 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → ((4↑𝑛) + 5) ∈ ℤ)
4414a1i 11 . . . . . 6 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 4 ∈ ℤ)
4543, 44zmulcld 12361 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → (((4↑𝑛) + 5) · 4) ∈ ℤ)
4635, 42zmulcld 12361 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → (3 · 5) ∈ ℤ)
47 simpr 484 . . . . . 6 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ ((4↑𝑛) + 5))
4835, 43, 44, 47dvdsmultr1d 15934 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ (((4↑𝑛) + 5) · 4))
49 dvdsmul1 15915 . . . . . . 7 ((3 ∈ ℤ ∧ 5 ∈ ℤ) → 3 ∥ (3 · 5))
5013, 19, 49mp2an 688 . . . . . 6 3 ∥ (3 · 5)
5150a1i 11 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ (3 · 5))
5235, 45, 46, 48, 51dvds2subd 15930 . . . 4 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ ((((4↑𝑛) + 5) · 4) − (3 · 5)))
5339nncnd 11919 . . . . . . . 8 (𝑛 ∈ ℕ → (4↑𝑛) ∈ ℂ)
5427a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 5 ∈ ℂ)
5528a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 4 ∈ ℂ)
5653, 54, 55adddird 10931 . . . . . . 7 (𝑛 ∈ ℕ → (((4↑𝑛) + 5) · 4) = (((4↑𝑛) · 4) + (5 · 4)))
5756oveq1d 7270 . . . . . 6 (𝑛 ∈ ℕ → ((((4↑𝑛) + 5) · 4) − 15) = ((((4↑𝑛) · 4) + (5 · 4)) − 15))
58 3cn 11984 . . . . . . . . 9 3 ∈ ℂ
59 5t3e15 12467 . . . . . . . . 9 (5 · 3) = 15
6027, 58, 59mulcomli 10915 . . . . . . . 8 (3 · 5) = 15
6160a1i 11 . . . . . . 7 (𝑛 ∈ ℕ → (3 · 5) = 15)
6261oveq2d 7271 . . . . . 6 (𝑛 ∈ ℕ → ((((4↑𝑛) + 5) · 4) − (3 · 5)) = ((((4↑𝑛) + 5) · 4) − 15))
6355, 38expp1d 13793 . . . . . . . 8 (𝑛 ∈ ℕ → (4↑(𝑛 + 1)) = ((4↑𝑛) · 4))
64 ax-1cn 10860 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
65 3p1e4 12048 . . . . . . . . . . . . . . . 16 (3 + 1) = 4
6658, 64, 65addcomli 11097 . . . . . . . . . . . . . . 15 (1 + 3) = 4
6766eqcomi 2747 . . . . . . . . . . . . . 14 4 = (1 + 3)
6867oveq1i 7265 . . . . . . . . . . . . 13 (4 − 3) = ((1 + 3) − 3)
6964, 58pncan3oi 11167 . . . . . . . . . . . . 13 ((1 + 3) − 3) = 1
7068, 69eqtri 2766 . . . . . . . . . . . 12 (4 − 3) = 1
7170oveq2i 7266 . . . . . . . . . . 11 (5 · (4 − 3)) = (5 · 1)
7227, 28, 58subdii 11354 . . . . . . . . . . 11 (5 · (4 − 3)) = ((5 · 4) − (5 · 3))
7327mulid1i 10910 . . . . . . . . . . 11 (5 · 1) = 5
7471, 72, 733eqtr3ri 2775 . . . . . . . . . 10 5 = ((5 · 4) − (5 · 3))
7559eqcomi 2747 . . . . . . . . . . 11 15 = (5 · 3)
7675oveq2i 7266 . . . . . . . . . 10 ((5 · 4) − 15) = ((5 · 4) − (5 · 3))
7774, 76eqtr4i 2769 . . . . . . . . 9 5 = ((5 · 4) − 15)
7877a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 5 = ((5 · 4) − 15))
7963, 78oveq12d 7273 . . . . . . 7 (𝑛 ∈ ℕ → ((4↑(𝑛 + 1)) + 5) = (((4↑𝑛) · 4) + ((5 · 4) − 15)))
8053, 55mulcld 10926 . . . . . . . 8 (𝑛 ∈ ℕ → ((4↑𝑛) · 4) ∈ ℂ)
8154, 55mulcld 10926 . . . . . . . 8 (𝑛 ∈ ℕ → (5 · 4) ∈ ℂ)
82 5nn0 12183 . . . . . . . . . . 11 5 ∈ ℕ0
8315, 82deccl 12381 . . . . . . . . . 10 15 ∈ ℕ0
8483nn0cni 12175 . . . . . . . . 9 15 ∈ ℂ
8584a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 15 ∈ ℂ)
8680, 81, 85addsubassd 11282 . . . . . . 7 (𝑛 ∈ ℕ → ((((4↑𝑛) · 4) + (5 · 4)) − 15) = (((4↑𝑛) · 4) + ((5 · 4) − 15)))
8779, 86eqtr4d 2781 . . . . . 6 (𝑛 ∈ ℕ → ((4↑(𝑛 + 1)) + 5) = ((((4↑𝑛) · 4) + (5 · 4)) − 15))
8857, 62, 873eqtr4rd 2789 . . . . 5 (𝑛 ∈ ℕ → ((4↑(𝑛 + 1)) + 5) = ((((4↑𝑛) + 5) · 4) − (3 · 5)))
8988adantr 480 . . . 4 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → ((4↑(𝑛 + 1)) + 5) = ((((4↑𝑛) + 5) · 4) − (3 · 5)))
9052, 89breqtrrd 5098 . . 3 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ ((4↑(𝑛 + 1)) + 5))
9190ex 412 . 2 (𝑛 ∈ ℕ → (3 ∥ ((4↑𝑛) + 5) → 3 ∥ ((4↑(𝑛 + 1)) + 5)))
923, 6, 9, 12, 34, 91nnind 11921 1 (𝑁 ∈ ℕ → 3 ∥ ((4↑𝑁) + 5))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cc 10800  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  cn 11903  3c3 11959  4c4 11960  5c5 11961  9c9 11965  0cn0 12163  cz 12249  cdc 12366  cexp 13710  cdvds 15891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-seq 13650  df-exp 13711  df-dvds 15892
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator