MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgjustr Structured version   Visualization version   GIF version

Theorem tgjustr 26271
Description: Given any equivalence relation 𝑅, one can define a function 𝑓 such that all elements of an equivalence classe of 𝑅 have the same image by 𝑓. (Contributed by Thierry Arnoux, 25-Jan-2023.)
Assertion
Ref Expression
tgjustr ((𝐴𝑉𝑅 Er 𝐴) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦))))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝑥,𝑉,𝑦
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem tgjustr
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 erex 8300 . . . . . . 7 (𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))
21impcom 411 . . . . . 6 ((𝐴𝑉𝑅 Er 𝐴) → 𝑅 ∈ V)
3 ecexg 8280 . . . . . 6 (𝑅 ∈ V → [𝑢]𝑅 ∈ V)
42, 3syl 17 . . . . 5 ((𝐴𝑉𝑅 Er 𝐴) → [𝑢]𝑅 ∈ V)
54adantr 484 . . . 4 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑢𝐴) → [𝑢]𝑅 ∈ V)
65ralrimiva 3152 . . 3 ((𝐴𝑉𝑅 Er 𝐴) → ∀𝑢𝐴 [𝑢]𝑅 ∈ V)
7 eqid 2801 . . . 4 (𝑢𝐴 ↦ [𝑢]𝑅) = (𝑢𝐴 ↦ [𝑢]𝑅)
87fnmpt 6464 . . 3 (∀𝑢𝐴 [𝑢]𝑅 ∈ V → (𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴)
96, 8syl 17 . 2 ((𝐴𝑉𝑅 Er 𝐴) → (𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴)
10 simpllr 775 . . . . . 6 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑅 Er 𝐴)
11 simpr 488 . . . . . . 7 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) → 𝑥𝐴)
1211adantr 484 . . . . . 6 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥𝐴)
1310, 12erth 8325 . . . . 5 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑅𝑦 ↔ [𝑥]𝑅 = [𝑦]𝑅))
14 eceq1 8314 . . . . . . . 8 (𝑢 = 𝑥 → [𝑢]𝑅 = [𝑥]𝑅)
15 ecelqsg 8339 . . . . . . . . 9 ((𝑅 ∈ V ∧ 𝑥𝐴) → [𝑥]𝑅 ∈ (𝐴 / 𝑅))
162, 15sylan 583 . . . . . . . 8 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) → [𝑥]𝑅 ∈ (𝐴 / 𝑅))
177, 14, 11, 16fvmptd3 6772 . . . . . . 7 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) → ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = [𝑥]𝑅)
1817adantr 484 . . . . . 6 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = [𝑥]𝑅)
19 eceq1 8314 . . . . . . . 8 (𝑢 = 𝑦 → [𝑢]𝑅 = [𝑦]𝑅)
20 simpr 488 . . . . . . . 8 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
21 ecelqsg 8339 . . . . . . . . 9 ((𝑅 ∈ V ∧ 𝑦𝐴) → [𝑦]𝑅 ∈ (𝐴 / 𝑅))
222, 21sylan 583 . . . . . . . 8 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑦𝐴) → [𝑦]𝑅 ∈ (𝐴 / 𝑅))
237, 19, 20, 22fvmptd3 6772 . . . . . . 7 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑦𝐴) → ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦) = [𝑦]𝑅)
2423adantlr 714 . . . . . 6 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦) = [𝑦]𝑅)
2518, 24eqeq12d 2817 . . . . 5 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦) ↔ [𝑥]𝑅 = [𝑦]𝑅))
2613, 25bitr4d 285 . . . 4 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦)))
2726ralrimiva 3152 . . 3 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) → ∀𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦)))
2827ralrimiva 3152 . 2 ((𝐴𝑉𝑅 Er 𝐴) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦)))
29 mptexg 6965 . . . 4 (𝐴𝑉 → (𝑢𝐴 ↦ [𝑢]𝑅) ∈ V)
3029adantr 484 . . 3 ((𝐴𝑉𝑅 Er 𝐴) → (𝑢𝐴 ↦ [𝑢]𝑅) ∈ V)
31 fneq1 6418 . . . . 5 (𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) → (𝑓 Fn 𝐴 ↔ (𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴))
32 simpl 486 . . . . . . . . 9 ((𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) ∧ (𝑥𝐴𝑦𝐴)) → 𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅))
3332fveq1d 6651 . . . . . . . 8 ((𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑓𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥))
3432fveq1d 6651 . . . . . . . 8 ((𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑓𝑦) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦))
3533, 34eqeq12d 2817 . . . . . . 7 ((𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑓𝑥) = (𝑓𝑦) ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦)))
3635bibi2d 346 . . . . . 6 ((𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦)) ↔ (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦))))
37362ralbidva 3166 . . . . 5 (𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦))))
3831, 37anbi12d 633 . . . 4 (𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) → ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦))) ↔ ((𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦)))))
3938spcegv 3548 . . 3 ((𝑢𝐴 ↦ [𝑢]𝑅) ∈ V → (((𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦)))))
4030, 39syl 17 . 2 ((𝐴𝑉𝑅 Er 𝐴) → (((𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦)))))
419, 28, 40mp2and 698 1 ((𝐴𝑉𝑅 Er 𝐴) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2112  wral 3109  Vcvv 3444   class class class wbr 5033  cmpt 5113   Fn wfn 6323  cfv 6328   Er wer 8273  [cec 8274   / cqs 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-er 8276  df-ec 8278  df-qs 8282
This theorem is referenced by:  tgjustc2  26273
  Copyright terms: Public domain W3C validator