MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgjustr Structured version   Visualization version   GIF version

Theorem tgjustr 28401
Description: Given any equivalence relation 𝑅, one can define a function 𝑓 such that all elements of an equivalence classe of 𝑅 have the same image by 𝑓. (Contributed by Thierry Arnoux, 25-Jan-2023.)
Assertion
Ref Expression
tgjustr ((𝐴𝑉𝑅 Er 𝐴) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦))))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝑥,𝑉,𝑦
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem tgjustr
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 erex 8695 . . . . . . 7 (𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))
21impcom 407 . . . . . 6 ((𝐴𝑉𝑅 Er 𝐴) → 𝑅 ∈ V)
3 ecexg 8675 . . . . . 6 (𝑅 ∈ V → [𝑢]𝑅 ∈ V)
42, 3syl 17 . . . . 5 ((𝐴𝑉𝑅 Er 𝐴) → [𝑢]𝑅 ∈ V)
54adantr 480 . . . 4 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑢𝐴) → [𝑢]𝑅 ∈ V)
65ralrimiva 3125 . . 3 ((𝐴𝑉𝑅 Er 𝐴) → ∀𝑢𝐴 [𝑢]𝑅 ∈ V)
7 eqid 2729 . . . 4 (𝑢𝐴 ↦ [𝑢]𝑅) = (𝑢𝐴 ↦ [𝑢]𝑅)
87fnmpt 6658 . . 3 (∀𝑢𝐴 [𝑢]𝑅 ∈ V → (𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴)
96, 8syl 17 . 2 ((𝐴𝑉𝑅 Er 𝐴) → (𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴)
10 simpllr 775 . . . . . 6 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑅 Er 𝐴)
11 simpr 484 . . . . . . 7 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) → 𝑥𝐴)
1211adantr 480 . . . . . 6 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥𝐴)
1310, 12erth 8725 . . . . 5 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑅𝑦 ↔ [𝑥]𝑅 = [𝑦]𝑅))
14 eceq1 8710 . . . . . . . 8 (𝑢 = 𝑥 → [𝑢]𝑅 = [𝑥]𝑅)
15 ecelqsw 8742 . . . . . . . . 9 ((𝑅 ∈ V ∧ 𝑥𝐴) → [𝑥]𝑅 ∈ (𝐴 / 𝑅))
162, 15sylan 580 . . . . . . . 8 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) → [𝑥]𝑅 ∈ (𝐴 / 𝑅))
177, 14, 11, 16fvmptd3 6991 . . . . . . 7 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) → ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = [𝑥]𝑅)
1817adantr 480 . . . . . 6 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = [𝑥]𝑅)
19 eceq1 8710 . . . . . . . 8 (𝑢 = 𝑦 → [𝑢]𝑅 = [𝑦]𝑅)
20 simpr 484 . . . . . . . 8 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
21 ecelqsw 8742 . . . . . . . . 9 ((𝑅 ∈ V ∧ 𝑦𝐴) → [𝑦]𝑅 ∈ (𝐴 / 𝑅))
222, 21sylan 580 . . . . . . . 8 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑦𝐴) → [𝑦]𝑅 ∈ (𝐴 / 𝑅))
237, 19, 20, 22fvmptd3 6991 . . . . . . 7 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑦𝐴) → ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦) = [𝑦]𝑅)
2423adantlr 715 . . . . . 6 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦) = [𝑦]𝑅)
2518, 24eqeq12d 2745 . . . . 5 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦) ↔ [𝑥]𝑅 = [𝑦]𝑅))
2613, 25bitr4d 282 . . . 4 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦)))
2726ralrimiva 3125 . . 3 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) → ∀𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦)))
2827ralrimiva 3125 . 2 ((𝐴𝑉𝑅 Er 𝐴) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦)))
29 mptexg 7195 . . . 4 (𝐴𝑉 → (𝑢𝐴 ↦ [𝑢]𝑅) ∈ V)
3029adantr 480 . . 3 ((𝐴𝑉𝑅 Er 𝐴) → (𝑢𝐴 ↦ [𝑢]𝑅) ∈ V)
31 fneq1 6609 . . . . 5 (𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) → (𝑓 Fn 𝐴 ↔ (𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴))
32 simpl 482 . . . . . . . . 9 ((𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) ∧ (𝑥𝐴𝑦𝐴)) → 𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅))
3332fveq1d 6860 . . . . . . . 8 ((𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑓𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥))
3432fveq1d 6860 . . . . . . . 8 ((𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑓𝑦) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦))
3533, 34eqeq12d 2745 . . . . . . 7 ((𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑓𝑥) = (𝑓𝑦) ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦)))
3635bibi2d 342 . . . . . 6 ((𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦)) ↔ (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦))))
37362ralbidva 3199 . . . . 5 (𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦))))
3831, 37anbi12d 632 . . . 4 (𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) → ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦))) ↔ ((𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦)))))
3938spcegv 3563 . . 3 ((𝑢𝐴 ↦ [𝑢]𝑅) ∈ V → (((𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦)))))
4030, 39syl 17 . 2 ((𝐴𝑉𝑅 Er 𝐴) → (((𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦)))))
419, 28, 40mp2and 699 1 ((𝐴𝑉𝑅 Er 𝐴) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3447   class class class wbr 5107  cmpt 5188   Fn wfn 6506  cfv 6511   Er wer 8668  [cec 8669   / cqs 8670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-er 8671  df-ec 8673  df-qs 8677
This theorem is referenced by:  tgjustc2  28403
  Copyright terms: Public domain W3C validator