MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgjustr Structured version   Visualization version   GIF version

Theorem tgjustr 27416
Description: Given any equivalence relation 𝑅, one can define a function 𝑓 such that all elements of an equivalence classe of 𝑅 have the same image by 𝑓. (Contributed by Thierry Arnoux, 25-Jan-2023.)
Assertion
Ref Expression
tgjustr ((𝐴𝑉𝑅 Er 𝐴) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦))))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝑥,𝑉,𝑦
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem tgjustr
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 erex 8672 . . . . . . 7 (𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))
21impcom 408 . . . . . 6 ((𝐴𝑉𝑅 Er 𝐴) → 𝑅 ∈ V)
3 ecexg 8652 . . . . . 6 (𝑅 ∈ V → [𝑢]𝑅 ∈ V)
42, 3syl 17 . . . . 5 ((𝐴𝑉𝑅 Er 𝐴) → [𝑢]𝑅 ∈ V)
54adantr 481 . . . 4 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑢𝐴) → [𝑢]𝑅 ∈ V)
65ralrimiva 3143 . . 3 ((𝐴𝑉𝑅 Er 𝐴) → ∀𝑢𝐴 [𝑢]𝑅 ∈ V)
7 eqid 2736 . . . 4 (𝑢𝐴 ↦ [𝑢]𝑅) = (𝑢𝐴 ↦ [𝑢]𝑅)
87fnmpt 6641 . . 3 (∀𝑢𝐴 [𝑢]𝑅 ∈ V → (𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴)
96, 8syl 17 . 2 ((𝐴𝑉𝑅 Er 𝐴) → (𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴)
10 simpllr 774 . . . . . 6 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑅 Er 𝐴)
11 simpr 485 . . . . . . 7 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) → 𝑥𝐴)
1211adantr 481 . . . . . 6 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥𝐴)
1310, 12erth 8697 . . . . 5 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑅𝑦 ↔ [𝑥]𝑅 = [𝑦]𝑅))
14 eceq1 8686 . . . . . . . 8 (𝑢 = 𝑥 → [𝑢]𝑅 = [𝑥]𝑅)
15 ecelqsg 8711 . . . . . . . . 9 ((𝑅 ∈ V ∧ 𝑥𝐴) → [𝑥]𝑅 ∈ (𝐴 / 𝑅))
162, 15sylan 580 . . . . . . . 8 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) → [𝑥]𝑅 ∈ (𝐴 / 𝑅))
177, 14, 11, 16fvmptd3 6971 . . . . . . 7 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) → ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = [𝑥]𝑅)
1817adantr 481 . . . . . 6 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = [𝑥]𝑅)
19 eceq1 8686 . . . . . . . 8 (𝑢 = 𝑦 → [𝑢]𝑅 = [𝑦]𝑅)
20 simpr 485 . . . . . . . 8 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
21 ecelqsg 8711 . . . . . . . . 9 ((𝑅 ∈ V ∧ 𝑦𝐴) → [𝑦]𝑅 ∈ (𝐴 / 𝑅))
222, 21sylan 580 . . . . . . . 8 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑦𝐴) → [𝑦]𝑅 ∈ (𝐴 / 𝑅))
237, 19, 20, 22fvmptd3 6971 . . . . . . 7 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑦𝐴) → ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦) = [𝑦]𝑅)
2423adantlr 713 . . . . . 6 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦) = [𝑦]𝑅)
2518, 24eqeq12d 2752 . . . . 5 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦) ↔ [𝑥]𝑅 = [𝑦]𝑅))
2613, 25bitr4d 281 . . . 4 ((((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦)))
2726ralrimiva 3143 . . 3 (((𝐴𝑉𝑅 Er 𝐴) ∧ 𝑥𝐴) → ∀𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦)))
2827ralrimiva 3143 . 2 ((𝐴𝑉𝑅 Er 𝐴) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦)))
29 mptexg 7171 . . . 4 (𝐴𝑉 → (𝑢𝐴 ↦ [𝑢]𝑅) ∈ V)
3029adantr 481 . . 3 ((𝐴𝑉𝑅 Er 𝐴) → (𝑢𝐴 ↦ [𝑢]𝑅) ∈ V)
31 fneq1 6593 . . . . 5 (𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) → (𝑓 Fn 𝐴 ↔ (𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴))
32 simpl 483 . . . . . . . . 9 ((𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) ∧ (𝑥𝐴𝑦𝐴)) → 𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅))
3332fveq1d 6844 . . . . . . . 8 ((𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑓𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥))
3432fveq1d 6844 . . . . . . . 8 ((𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑓𝑦) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦))
3533, 34eqeq12d 2752 . . . . . . 7 ((𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑓𝑥) = (𝑓𝑦) ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦)))
3635bibi2d 342 . . . . . 6 ((𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦)) ↔ (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦))))
37362ralbidva 3210 . . . . 5 (𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦))))
3831, 37anbi12d 631 . . . 4 (𝑓 = (𝑢𝐴 ↦ [𝑢]𝑅) → ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦))) ↔ ((𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦)))))
3938spcegv 3556 . . 3 ((𝑢𝐴 ↦ [𝑢]𝑅) ∈ V → (((𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦)))))
4030, 39syl 17 . 2 ((𝐴𝑉𝑅 Er 𝐴) → (((𝑢𝐴 ↦ [𝑢]𝑅) Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑥) = ((𝑢𝐴 ↦ [𝑢]𝑅)‘𝑦))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦)))))
419, 28, 40mp2and 697 1 ((𝐴𝑉𝑅 Er 𝐴) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝑓𝑥) = (𝑓𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3064  Vcvv 3445   class class class wbr 5105  cmpt 5188   Fn wfn 6491  cfv 6496   Er wer 8645  [cec 8646   / cqs 8647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-er 8648  df-ec 8650  df-qs 8654
This theorem is referenced by:  tgjustc2  27418
  Copyright terms: Public domain W3C validator