MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qliftlem Structured version   Visualization version   GIF version

Theorem qliftlem 8856
Description: Lemma for theorems about a function lift. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋𝑉)
Assertion
Ref Expression
qliftlem ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem qliftlem
StepHypRef Expression
1 qlift.3 . . 3 (𝜑𝑅 Er 𝑋)
2 qlift.4 . . 3 (𝜑𝑋𝑉)
3 erex 8787 . . 3 (𝑅 Er 𝑋 → (𝑋𝑉𝑅 ∈ V))
41, 2, 3sylc 65 . 2 (𝜑𝑅 ∈ V)
5 ecelqsg 8830 . 2 ((𝑅 ∈ V ∧ 𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
64, 5sylan 579 1 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654  cmpt 5249  ran crn 5701   Er wer 8760  [cec 8761   / cqs 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-er 8763  df-ec 8765  df-qs 8769
This theorem is referenced by:  qliftrel  8857  qliftel  8858  qliftel1  8859  qliftfun  8860  qliftf  8863  qliftval  8864
  Copyright terms: Public domain W3C validator