MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qliftlem Structured version   Visualization version   GIF version

Theorem qliftlem 8787
Description: Lemma for theorems about a function lift. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋𝑉)
Assertion
Ref Expression
qliftlem ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem qliftlem
StepHypRef Expression
1 qlift.3 . . 3 (𝜑𝑅 Er 𝑋)
2 qlift.4 . . 3 (𝜑𝑋𝑉)
3 erex 8722 . . 3 (𝑅 Er 𝑋 → (𝑋𝑉𝑅 ∈ V))
41, 2, 3sylc 65 . 2 (𝜑𝑅 ∈ V)
5 ecelqsg 8761 . 2 ((𝑅 ∈ V ∧ 𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
64, 5sylan 579 1 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  cop 4626  cmpt 5221  ran crn 5667   Er wer 8695  [cec 8696   / cqs 8697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-xp 5672  df-rel 5673  df-cnv 5674  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-er 8698  df-ec 8700  df-qs 8704
This theorem is referenced by:  qliftrel  8788  qliftel  8789  qliftel1  8790  qliftfun  8791  qliftf  8794  qliftval  8795
  Copyright terms: Public domain W3C validator