Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qliftlem | Structured version Visualization version GIF version |
Description: Lemma for theorems about a function lift. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
qliftlem | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.3 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
2 | qlift.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | erex 8480 | . . 3 ⊢ (𝑅 Er 𝑋 → (𝑋 ∈ 𝑉 → 𝑅 ∈ V)) | |
4 | 1, 2, 3 | sylc 65 | . 2 ⊢ (𝜑 → 𝑅 ∈ V) |
5 | ecelqsg 8519 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) | |
6 | 4, 5 | sylan 579 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 ↦ cmpt 5153 ran crn 5581 Er wer 8453 [cec 8454 / cqs 8455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-er 8456 df-ec 8458 df-qs 8462 |
This theorem is referenced by: qliftrel 8546 qliftel 8547 qliftel1 8548 qliftfun 8549 qliftf 8552 qliftval 8553 |
Copyright terms: Public domain | W3C validator |