| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qliftlem | Structured version Visualization version GIF version | ||
| Description: Lemma for theorems about a function lift. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
| Ref | Expression |
|---|---|
| qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
| qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
| qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| qlift.4 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| qliftlem | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.3 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 2 | qlift.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | erex 8695 | . . 3 ⊢ (𝑅 Er 𝑋 → (𝑋 ∈ 𝑉 → 𝑅 ∈ V)) | |
| 4 | 1, 2, 3 | sylc 65 | . 2 ⊢ (𝜑 → 𝑅 ∈ V) |
| 5 | ecelqsw 8742 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) | |
| 6 | 4, 5 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 ↦ cmpt 5188 ran crn 5639 Er wer 8668 [cec 8669 / cqs 8670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-er 8671 df-ec 8673 df-qs 8677 |
| This theorem is referenced by: qliftrel 8772 qliftel 8773 qliftel1 8774 qliftfun 8775 qliftf 8778 qliftval 8779 |
| Copyright terms: Public domain | W3C validator |