Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  qliftlem Structured version   Visualization version   GIF version

Theorem qliftlem 8365
 Description: 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋 ∈ V)
Assertion
Ref Expression
qliftlem ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem qliftlem
StepHypRef Expression
1 qlift.3 . . 3 (𝜑𝑅 Er 𝑋)
2 qlift.4 . . 3 (𝜑𝑋 ∈ V)
3 erex 8300 . . 3 (𝑅 Er 𝑋 → (𝑋 ∈ V → 𝑅 ∈ V))
41, 2, 3sylc 65 . 2 (𝜑𝑅 ∈ V)
5 ecelqsg 8339 . 2 ((𝑅 ∈ V ∧ 𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
64, 5sylan 583 1 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  Vcvv 3444  ⟨cop 4534   ↦ cmpt 5113  ran crn 5524   Er wer 8273  [cec 8274   / cqs 8275 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-xp 5529  df-rel 5530  df-cnv 5531  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-er 8276  df-ec 8278  df-qs 8282 This theorem is referenced by:  qliftrel  8366  qliftel  8367  qliftel1  8368  qliftfun  8369  qliftf  8372  qliftval  8373
 Copyright terms: Public domain W3C validator