Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eccnvepex Structured version   Visualization version   GIF version

Theorem eccnvepex 38299
Description: The converse epsilon coset exists. (Contributed by Peter Mazsa, 22-Mar-2023.)
Assertion
Ref Expression
eccnvepex [𝐴] E ∈ V

Proof of Theorem eccnvepex
StepHypRef Expression
1 snex 5406 . 2 {𝐴} ∈ V
2 cnvepresex 38298 . 2 ({𝐴} ∈ V → ( E ↾ {𝐴}) ∈ V)
3 ecexALTV 38295 . 2 (( E ↾ {𝐴}) ∈ V → [𝐴] E ∈ V)
41, 2, 3mp2b 10 1 [𝐴] E ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3459  {csn 4601   E cep 5552  ccnv 5653  cres 5656  [cec 8715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-eprel 5553  df-xp 5660  df-rel 5661  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ec 8719  df-qs 8723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator