![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eccnvepex | Structured version Visualization version GIF version |
Description: The converse epsilon coset exists. (Contributed by Peter Mazsa, 22-Mar-2023.) |
Ref | Expression |
---|---|
eccnvepex | ⊢ [𝐴]◡ E ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5441 | . 2 ⊢ {𝐴} ∈ V | |
2 | cnvepresex 38315 | . 2 ⊢ ({𝐴} ∈ V → (◡ E ↾ {𝐴}) ∈ V) | |
3 | ecexALTV 38312 | . 2 ⊢ ((◡ E ↾ {𝐴}) ∈ V → [𝐴]◡ E ∈ V) | |
4 | 1, 2, 3 | mp2b 10 | 1 ⊢ [𝐴]◡ E ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3477 {csn 4630 E cep 5587 ◡ccnv 5687 ↾ cres 5690 [cec 8741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-eprel 5588 df-xp 5694 df-rel 5695 df-cnv 5696 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ec 8745 df-qs 8749 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |