Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eccnvepex | Structured version Visualization version GIF version |
Description: The converse epsilon coset exists. (Contributed by Peter Mazsa, 22-Mar-2023.) |
Ref | Expression |
---|---|
eccnvepex | ⊢ [𝐴]◡ E ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5354 | . 2 ⊢ {𝐴} ∈ V | |
2 | cnvepresex 36469 | . 2 ⊢ ({𝐴} ∈ V → (◡ E ↾ {𝐴}) ∈ V) | |
3 | ecexALTV 36466 | . 2 ⊢ ((◡ E ↾ {𝐴}) ∈ V → [𝐴]◡ E ∈ V) | |
4 | 1, 2, 3 | mp2b 10 | 1 ⊢ [𝐴]◡ E ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 {csn 4561 E cep 5494 ◡ccnv 5588 ↾ cres 5591 [cec 8496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 df-qs 8504 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |