MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  00sr Structured version   Visualization version   GIF version

Theorem 00sr 10990
Description: A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
00sr (𝐴R → (𝐴 ·R 0R) = 0R)

Proof of Theorem 00sr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 10947 . 2 R = ((P × P) / ~R )
2 oveq1 7353 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R 0R) = (𝐴 ·R 0R))
32eqeq1d 2733 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R ·R 0R) = 0R ↔ (𝐴 ·R 0R) = 0R))
4 1pr 10906 . . . . 5 1PP
5 mulsrpr 10967 . . . . 5 (((𝑥P𝑦P) ∧ (1PP ∧ 1PP)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨1P, 1P⟩] ~R ) = [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R )
64, 4, 5mpanr12 705 . . . 4 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨1P, 1P⟩] ~R ) = [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R )
7 mulclpr 10911 . . . . . . . . . 10 ((𝑥P ∧ 1PP) → (𝑥 ·P 1P) ∈ P)
84, 7mpan2 691 . . . . . . . . 9 (𝑥P → (𝑥 ·P 1P) ∈ P)
9 mulclpr 10911 . . . . . . . . . 10 ((𝑦P ∧ 1PP) → (𝑦 ·P 1P) ∈ P)
104, 9mpan2 691 . . . . . . . . 9 (𝑦P → (𝑦 ·P 1P) ∈ P)
11 addclpr 10909 . . . . . . . . 9 (((𝑥 ·P 1P) ∈ P ∧ (𝑦 ·P 1P) ∈ P) → ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P)
128, 10, 11syl2an 596 . . . . . . . 8 ((𝑥P𝑦P) → ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P)
1312, 12anim12i 613 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P))
14 eqid 2731 . . . . . . . 8 (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) +P 1P) = (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) +P 1P)
15 enreceq 10957 . . . . . . . 8 (((((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P) ∧ (1PP ∧ 1PP)) → ([⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R ↔ (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) +P 1P) = (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) +P 1P)))
1614, 15mpbiri 258 . . . . . . 7 (((((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P) ∧ (1PP ∧ 1PP)) → [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R )
1713, 16sylan 580 . . . . . 6 ((((𝑥P𝑦P) ∧ (𝑥P𝑦P)) ∧ (1PP ∧ 1PP)) → [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R )
184, 4, 17mpanr12 705 . . . . 5 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R )
1918anidms 566 . . . 4 ((𝑥P𝑦P) → [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R )
206, 19eqtrd 2766 . . 3 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨1P, 1P⟩] ~R ) = [⟨1P, 1P⟩] ~R )
21 df-0r 10951 . . . 4 0R = [⟨1P, 1P⟩] ~R
2221oveq2i 7357 . . 3 ([⟨𝑥, 𝑦⟩] ~R ·R 0R) = ([⟨𝑥, 𝑦⟩] ~R ·R [⟨1P, 1P⟩] ~R )
2320, 22, 213eqtr4g 2791 . 2 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R 0R) = 0R)
241, 3, 23ecoptocl 8731 1 (𝐴R → (𝐴 ·R 0R) = 0R)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4579  (class class class)co 7346  [cec 8620  Pcnp 10750  1Pc1p 10751   +P cpp 10752   ·P cmp 10753   ~R cer 10755  Rcnr 10756  0Rc0r 10757   ·R cmr 10761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-ec 8624  df-qs 8628  df-ni 10763  df-pli 10764  df-mi 10765  df-lti 10766  df-plpq 10799  df-mpq 10800  df-ltpq 10801  df-enq 10802  df-nq 10803  df-erq 10804  df-plq 10805  df-mq 10806  df-1nq 10807  df-rq 10808  df-ltnq 10809  df-np 10872  df-1p 10873  df-plp 10874  df-mp 10875  df-ltp 10876  df-enr 10946  df-nr 10947  df-mr 10949  df-0r 10951
This theorem is referenced by:  pn0sr  10992  mulresr  11030  axi2m1  11050  axcnre  11055
  Copyright terms: Public domain W3C validator