MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  00sr Structured version   Visualization version   GIF version

Theorem 00sr 11052
Description: A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
00sr (𝐴R → (𝐴 ·R 0R) = 0R)

Proof of Theorem 00sr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 11009 . 2 R = ((P × P) / ~R )
2 oveq1 7394 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R 0R) = (𝐴 ·R 0R))
32eqeq1d 2731 . 2 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R ·R 0R) = 0R ↔ (𝐴 ·R 0R) = 0R))
4 1pr 10968 . . . . 5 1PP
5 mulsrpr 11029 . . . . 5 (((𝑥P𝑦P) ∧ (1PP ∧ 1PP)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨1P, 1P⟩] ~R ) = [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R )
64, 4, 5mpanr12 705 . . . 4 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨1P, 1P⟩] ~R ) = [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R )
7 mulclpr 10973 . . . . . . . . . 10 ((𝑥P ∧ 1PP) → (𝑥 ·P 1P) ∈ P)
84, 7mpan2 691 . . . . . . . . 9 (𝑥P → (𝑥 ·P 1P) ∈ P)
9 mulclpr 10973 . . . . . . . . . 10 ((𝑦P ∧ 1PP) → (𝑦 ·P 1P) ∈ P)
104, 9mpan2 691 . . . . . . . . 9 (𝑦P → (𝑦 ·P 1P) ∈ P)
11 addclpr 10971 . . . . . . . . 9 (((𝑥 ·P 1P) ∈ P ∧ (𝑦 ·P 1P) ∈ P) → ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P)
128, 10, 11syl2an 596 . . . . . . . 8 ((𝑥P𝑦P) → ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P)
1312, 12anim12i 613 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P))
14 eqid 2729 . . . . . . . 8 (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) +P 1P) = (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) +P 1P)
15 enreceq 11019 . . . . . . . 8 (((((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P) ∧ (1PP ∧ 1PP)) → ([⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R ↔ (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) +P 1P) = (((𝑥 ·P 1P) +P (𝑦 ·P 1P)) +P 1P)))
1614, 15mpbiri 258 . . . . . . 7 (((((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P ∧ ((𝑥 ·P 1P) +P (𝑦 ·P 1P)) ∈ P) ∧ (1PP ∧ 1PP)) → [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R )
1713, 16sylan 580 . . . . . 6 ((((𝑥P𝑦P) ∧ (𝑥P𝑦P)) ∧ (1PP ∧ 1PP)) → [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R )
184, 4, 17mpanr12 705 . . . . 5 (((𝑥P𝑦P) ∧ (𝑥P𝑦P)) → [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R )
1918anidms 566 . . . 4 ((𝑥P𝑦P) → [⟨((𝑥 ·P 1P) +P (𝑦 ·P 1P)), ((𝑥 ·P 1P) +P (𝑦 ·P 1P))⟩] ~R = [⟨1P, 1P⟩] ~R )
206, 19eqtrd 2764 . . 3 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨1P, 1P⟩] ~R ) = [⟨1P, 1P⟩] ~R )
21 df-0r 11013 . . . 4 0R = [⟨1P, 1P⟩] ~R
2221oveq2i 7398 . . 3 ([⟨𝑥, 𝑦⟩] ~R ·R 0R) = ([⟨𝑥, 𝑦⟩] ~R ·R [⟨1P, 1P⟩] ~R )
2320, 22, 213eqtr4g 2789 . 2 ((𝑥P𝑦P) → ([⟨𝑥, 𝑦⟩] ~R ·R 0R) = 0R)
241, 3, 23ecoptocl 8780 1 (𝐴R → (𝐴 ·R 0R) = 0R)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4595  (class class class)co 7387  [cec 8669  Pcnp 10812  1Pc1p 10813   +P cpp 10814   ·P cmp 10815   ~R cer 10817  Rcnr 10818  0Rc0r 10819   ·R cmr 10823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-ni 10825  df-pli 10826  df-mi 10827  df-lti 10828  df-plpq 10861  df-mpq 10862  df-ltpq 10863  df-enq 10864  df-nq 10865  df-erq 10866  df-plq 10867  df-mq 10868  df-1nq 10869  df-rq 10870  df-ltnq 10871  df-np 10934  df-1p 10935  df-plp 10936  df-mp 10937  df-ltp 10938  df-enr 11008  df-nr 11009  df-mr 11011  df-0r 11013
This theorem is referenced by:  pn0sr  11054  mulresr  11092  axi2m1  11112  axcnre  11117
  Copyright terms: Public domain W3C validator