MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qliftval Structured version   Visualization version   GIF version

Theorem qliftval 8553
Description: The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋𝑉)
qliftval.4 (𝑥 = 𝐶𝐴 = 𝐵)
qliftval.6 (𝜑 → Fun 𝐹)
Assertion
Ref Expression
qliftval ((𝜑𝐶𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem qliftval
StepHypRef Expression
1 qlift.1 . 2 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 qlift.2 . . 3 ((𝜑𝑥𝑋) → 𝐴𝑌)
3 qlift.3 . . 3 (𝜑𝑅 Er 𝑋)
4 qlift.4 . . 3 (𝜑𝑋𝑉)
51, 2, 3, 4qliftlem 8545 . 2 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
6 eceq1 8494 . 2 (𝑥 = 𝐶 → [𝑥]𝑅 = [𝐶]𝑅)
7 qliftval.4 . 2 (𝑥 = 𝐶𝐴 = 𝐵)
8 qliftval.6 . 2 (𝜑 → Fun 𝐹)
91, 5, 2, 6, 7, 8fliftval 7167 1 ((𝜑𝐶𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cop 4564  cmpt 5153  ran crn 5581  Fun wfun 6412  cfv 6418   Er wer 8453  [cec 8454   / cqs 8455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-er 8456  df-ec 8458  df-qs 8462
This theorem is referenced by:  orbstaval  18833  frgpupval  19295
  Copyright terms: Public domain W3C validator