| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qliftval | Structured version Visualization version GIF version | ||
| Description: The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
| Ref | Expression |
|---|---|
| qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
| qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
| qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| qlift.4 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| qliftval.4 | ⊢ (𝑥 = 𝐶 → 𝐴 = 𝐵) |
| qliftval.6 | ⊢ (𝜑 → Fun 𝐹) |
| Ref | Expression |
|---|---|
| qliftval | ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 | . 2 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
| 2 | qlift.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
| 3 | qlift.3 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 4 | qlift.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 5 | 1, 2, 3, 4 | qliftlem 8722 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
| 6 | eceq1 8661 | . 2 ⊢ (𝑥 = 𝐶 → [𝑥]𝑅 = [𝐶]𝑅) | |
| 7 | qliftval.4 | . 2 ⊢ (𝑥 = 𝐶 → 𝐴 = 𝐵) | |
| 8 | qliftval.6 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
| 9 | 1, 5, 2, 6, 7, 8 | fliftval 7250 | 1 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4582 ↦ cmpt 5172 ran crn 5617 Fun wfun 6475 ‘cfv 6481 Er wer 8619 [cec 8620 / cqs 8621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-er 8622 df-ec 8624 df-qs 8628 |
| This theorem is referenced by: orbstaval 19222 frgpupval 19684 |
| Copyright terms: Public domain | W3C validator |