![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qliftval | Structured version Visualization version GIF version |
Description: The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ V) |
qliftval.4 | ⊢ (𝑥 = 𝐶 → 𝐴 = 𝐵) |
qliftval.6 | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
qliftval | ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . 2 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
2 | qlift.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
3 | qlift.3 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
4 | qlift.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) | |
5 | 1, 2, 3, 4 | qliftlem 8066 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
6 | eceq1 8020 | . 2 ⊢ (𝑥 = 𝐶 → [𝑥]𝑅 = [𝐶]𝑅) | |
7 | qliftval.4 | . 2 ⊢ (𝑥 = 𝐶 → 𝐴 = 𝐵) | |
8 | qliftval.6 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
9 | 1, 5, 2, 6, 7, 8 | fliftval 6794 | 1 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3385 〈cop 4374 ↦ cmpt 4922 ran crn 5313 Fun wfun 6095 ‘cfv 6101 Er wer 7979 [cec 7980 / cqs 7981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fv 6109 df-er 7982 df-ec 7984 df-qs 7988 |
This theorem is referenced by: orbstaval 18057 frgpupval 18502 |
Copyright terms: Public domain | W3C validator |