| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qliftval | Structured version Visualization version GIF version | ||
| Description: The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
| Ref | Expression |
|---|---|
| qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
| qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
| qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| qlift.4 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| qliftval.4 | ⊢ (𝑥 = 𝐶 → 𝐴 = 𝐵) |
| qliftval.6 | ⊢ (𝜑 → Fun 𝐹) |
| Ref | Expression |
|---|---|
| qliftval | ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 | . 2 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
| 2 | qlift.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
| 3 | qlift.3 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 4 | qlift.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 5 | 1, 2, 3, 4 | qliftlem 8838 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
| 6 | eceq1 8784 | . 2 ⊢ (𝑥 = 𝐶 → [𝑥]𝑅 = [𝐶]𝑅) | |
| 7 | qliftval.4 | . 2 ⊢ (𝑥 = 𝐶 → 𝐴 = 𝐵) | |
| 8 | qliftval.6 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
| 9 | 1, 5, 2, 6, 7, 8 | fliftval 7336 | 1 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4632 ↦ cmpt 5225 ran crn 5686 Fun wfun 6555 ‘cfv 6561 Er wer 8742 [cec 8743 / cqs 8744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fv 6569 df-er 8745 df-ec 8747 df-qs 8751 |
| This theorem is referenced by: orbstaval 19330 frgpupval 19792 |
| Copyright terms: Public domain | W3C validator |