![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveqan12d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | oveq12 7457 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: oveqan12rd 7468 offval 7723 offval3 8023 odi 8635 omopth2 8640 oeoa 8653 ecovdi 8883 ackbij1lem9 10296 distrpi 10967 addpipq 11006 mulpipq 11009 lterpq 11039 reclem3pr 11118 1idsr 11167 mulcnsr 11205 mulrid 11288 1re 11290 mul02 11468 addcom 11476 mulsub 11733 mulsub2 11734 muleqadd 11934 divmuldiv 11994 div2sub 12119 addltmul 12529 xnegdi 13310 xadddilem 13356 fzsubel 13620 fzoval 13717 seqid3 14097 mulexp 14152 sqdiv 14171 hashdom 14428 hashun 14431 ccatfval 14621 splcl 14800 crim 15164 readd 15175 remullem 15177 imadd 15183 cjadd 15190 cjreim 15209 sqrtmul 15308 sqabsadd 15331 sqabssub 15332 absmul 15343 abs2dif 15381 bhmafibid1 15514 binom 15878 binomfallfac 16089 sinadd 16212 cosadd 16213 dvds2ln 16337 sadcaddlem 16503 bezoutlem4 16589 bezout 16590 absmulgcd 16596 gcddiv 16598 bezoutr1 16616 lcmgcd 16654 lcmfass 16693 nn0gcdsq 16799 crth 16825 pythagtriplem1 16863 pcqmul 16900 4sqlem4a 16998 4sqlem4 16999 prdsplusgval 17533 prdsmulrval 17535 prdsdsval 17538 prdsvscaval 17539 idmgmhm 18739 resmgmhm 18749 idmhm 18830 0mhm 18854 resmhm 18855 prdspjmhm 18864 pwsdiagmhm 18866 gsumws2 18877 frmdup1 18899 eqgval 19217 idghm 19271 resghm 19272 mulgmhm 19869 mulgghm 19870 srglmhm 20248 srgrmhm 20249 ringlghm 20335 ringrghm 20336 gsumdixp 20342 isrhm 20504 rhmval 20526 issrngd 20878 lmodvsghm 20943 pwssplit2 21082 xrsdsval 21451 expmhm 21477 expghm 21509 mulgghm2 21510 mulgrhm 21511 pzriprnglem4 21518 cygznlem3 21611 asclghm 21926 psrmulfval 21986 evlslem4 22123 mpfrcl 22132 mamuval 22418 mamufv 22419 mvmulval 22570 mndifsplit 22663 mat2pmatmul 22758 decpmatmul 22799 fmval 23972 fmf 23974 flffval 24018 divcnOLD 24909 divcn 24911 rescncf 24942 htpyco1 25029 tcphcph 25290 rrxdsfival 25466 ehl2eudisval 25476 volun 25599 dyadval 25646 dvlip 26052 ftc1a 26098 ftc2ditglem 26106 tdeglem3 26118 q1pval 26214 reefgim 26512 relogoprlem 26651 eflogeq 26662 zetacvg 27076 lgsdir2 27392 lgsdchr 27417 2sq2 27495 2sqnn0 27500 negsdi 28100 brbtwn2 28938 ax5seglem4 28965 axeuclid 28996 axcontlem2 28998 axcontlem4 29000 axcontlem8 29004 clwwlknccat 30095 ex-fpar 30494 ipasslem11 30872 hhssnv 31296 mayete3i 31760 idunop 32010 idhmop 32014 0lnfn 32017 lnopmi 32032 lnophsi 32033 lnopcoi 32035 hmops 32052 hmopm 32053 nlelshi 32092 cnlnadjlem2 32100 kbass6 32153 strlem3a 32284 hstrlem3a 32292 mndpluscn 33872 xrge0iifhom 33883 rezh 33917 probdsb 34387 resconn 35214 iscvm 35227 satfdmlem 35336 satffunlem1lem1 35370 satffunlem2lem1 35372 fwddifnval 36127 bj-bary1 37278 poimirlem15 37595 mbfposadd 37627 ftc1anclem3 37655 rrnmval 37788 dvhopaddN 41071 nnadddir 42259 cnreeu 42446 prjcrvfval 42586 pellex 42791 rmxfval 42860 rmyfval 42861 qirropth 42864 rmxycomplete 42874 jm2.15nn0 42960 rmxdioph 42973 expdiophlem2 42979 mendvsca 43148 deg1mhm 43161 mnringmulrvald 44196 addrval 44435 subrval 44436 fmulcl 45502 fmuldfeqlem1 45503 line 48466 itsclc0xyqsolr 48503 |
Copyright terms: Public domain | W3C validator |