| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | oveq12 7378 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: oveqan12rd 7389 offval 7642 offval3 7940 odi 8520 omopth2 8525 oeoa 8538 ecovdi 8775 ackbij1lem9 10156 distrpi 10827 addpipq 10866 mulpipq 10869 lterpq 10899 reclem3pr 10978 1idsr 11027 mulcnsr 11065 mulrid 11148 1re 11150 mul02 11328 addcom 11336 mulsub 11597 mulsub2 11598 muleqadd 11798 divmuldiv 11858 div2sub 11983 addltmul 12394 xnegdi 13184 xadddilem 13230 fzsubel 13497 fzoval 13597 seqid3 13987 mulexp 14042 sqdiv 14062 hashdom 14320 hashun 14323 ccatfval 14514 splcl 14693 crim 15057 readd 15068 remullem 15070 imadd 15076 cjadd 15083 cjreim 15102 sqrtmul 15201 sqabsadd 15224 sqabssub 15225 absmul 15236 abs2dif 15275 bhmafibid1 15410 binom 15772 binomfallfac 15983 sinadd 16108 cosadd 16109 dvds2ln 16235 sadcaddlem 16403 bezoutlem4 16488 bezout 16489 absmulgcd 16495 gcddiv 16497 bezoutr1 16515 lcmgcd 16553 lcmfass 16592 nn0gcdsq 16698 crth 16724 pythagtriplem1 16763 pcqmul 16800 4sqlem4a 16898 4sqlem4 16899 prdsplusgval 17412 prdsmulrval 17414 prdsdsval 17417 prdsvscaval 17418 idmgmhm 18610 resmgmhm 18620 idmhm 18704 0mhm 18728 resmhm 18729 prdspjmhm 18738 pwsdiagmhm 18740 gsumws2 18751 frmdup1 18773 eqgval 19091 idghm 19145 resghm 19146 mulgmhm 19741 mulgghm 19742 srglmhm 20141 srgrmhm 20142 ringlghm 20232 ringrghm 20233 gsumdixp 20239 isrhm 20398 rhmval 20420 issrngd 20775 lmodvsghm 20861 pwssplit2 20999 xrsdsval 21352 expmhm 21378 expghm 21417 mulgghm2 21418 mulgrhm 21419 pzriprnglem4 21426 cygznlem3 21511 asclghm 21825 psrmulfval 21885 evlslem4 22016 mpfrcl 22025 mamuval 22313 mamufv 22314 mvmulval 22463 mndifsplit 22556 mat2pmatmul 22651 decpmatmul 22692 fmval 23863 fmf 23865 flffval 23909 divcnOLD 24790 divcn 24792 rescncf 24823 htpyco1 24910 tcphcph 25170 rrxdsfival 25346 ehl2eudisval 25356 volun 25479 dyadval 25526 dvlip 25931 ftc1a 25977 ftc2ditglem 25985 tdeglem3 25997 q1pval 26093 reefgim 26393 relogoprlem 26533 eflogeq 26544 zetacvg 26958 lgsdir2 27274 lgsdchr 27299 2sq2 27377 2sqnn0 27382 negsdi 27996 brbtwn2 28885 ax5seglem4 28912 axeuclid 28943 axcontlem2 28945 axcontlem4 28947 axcontlem8 28951 clwwlknccat 30042 ex-fpar 30441 ipasslem11 30819 hhssnv 31243 mayete3i 31707 idunop 31957 idhmop 31961 0lnfn 31964 lnopmi 31979 lnophsi 31980 lnopcoi 31982 hmops 31999 hmopm 32000 nlelshi 32039 cnlnadjlem2 32047 kbass6 32100 strlem3a 32231 hstrlem3a 32239 elrgspnlem2 33210 mndpluscn 33909 xrge0iifhom 33920 rezh 33952 probdsb 34406 resconn 35226 iscvm 35239 satfdmlem 35348 satffunlem1lem1 35382 satffunlem2lem1 35384 fwddifnval 36144 bj-bary1 37293 poimirlem15 37622 mbfposadd 37654 ftc1anclem3 37682 rrnmval 37815 dvhopaddN 41101 nnadddir 42251 cnreeu 42471 prjcrvfval 42612 pellex 42816 rmxfval 42885 rmyfval 42886 qirropth 42889 rmxycomplete 42899 jm2.15nn0 42985 rmxdioph 42998 expdiophlem2 43004 mendvsca 43169 deg1mhm 43182 mnringmulrvald 44209 addrval 44448 subrval 44449 fmulcl 45572 fmuldfeqlem1 45573 line 48714 itsclc0xyqsolr 48751 |
| Copyright terms: Public domain | W3C validator |