![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveqan12d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | oveq12 7439 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 (class class class)co 7430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 |
This theorem is referenced by: oveqan12rd 7450 offval 7705 offval3 8005 odi 8615 omopth2 8620 oeoa 8633 ecovdi 8863 ackbij1lem9 10264 distrpi 10935 addpipq 10974 mulpipq 10977 lterpq 11007 reclem3pr 11086 1idsr 11135 mulcnsr 11173 mulrid 11256 1re 11258 mul02 11436 addcom 11444 mulsub 11703 mulsub2 11704 muleqadd 11904 divmuldiv 11964 div2sub 12089 addltmul 12499 xnegdi 13286 xadddilem 13332 fzsubel 13596 fzoval 13696 seqid3 14083 mulexp 14138 sqdiv 14157 hashdom 14414 hashun 14417 ccatfval 14607 splcl 14786 crim 15150 readd 15161 remullem 15163 imadd 15169 cjadd 15176 cjreim 15195 sqrtmul 15294 sqabsadd 15317 sqabssub 15318 absmul 15329 abs2dif 15367 bhmafibid1 15500 binom 15862 binomfallfac 16073 sinadd 16196 cosadd 16197 dvds2ln 16322 sadcaddlem 16490 bezoutlem4 16575 bezout 16576 absmulgcd 16582 gcddiv 16584 bezoutr1 16602 lcmgcd 16640 lcmfass 16679 nn0gcdsq 16785 crth 16811 pythagtriplem1 16849 pcqmul 16886 4sqlem4a 16984 4sqlem4 16985 prdsplusgval 17519 prdsmulrval 17521 prdsdsval 17524 prdsvscaval 17525 idmgmhm 18726 resmgmhm 18736 idmhm 18820 0mhm 18844 resmhm 18845 prdspjmhm 18854 pwsdiagmhm 18856 gsumws2 18867 frmdup1 18889 eqgval 19207 idghm 19261 resghm 19262 mulgmhm 19859 mulgghm 19860 srglmhm 20238 srgrmhm 20239 ringlghm 20325 ringrghm 20326 gsumdixp 20332 isrhm 20494 rhmval 20516 issrngd 20872 lmodvsghm 20937 pwssplit2 21076 xrsdsval 21445 expmhm 21471 expghm 21503 mulgghm2 21504 mulgrhm 21505 pzriprnglem4 21512 cygznlem3 21605 asclghm 21920 psrmulfval 21980 evlslem4 22117 mpfrcl 22126 mamuval 22412 mamufv 22413 mvmulval 22564 mndifsplit 22657 mat2pmatmul 22752 decpmatmul 22793 fmval 23966 fmf 23968 flffval 24012 divcnOLD 24903 divcn 24905 rescncf 24936 htpyco1 25023 tcphcph 25284 rrxdsfival 25460 ehl2eudisval 25470 volun 25593 dyadval 25640 dvlip 26046 ftc1a 26092 ftc2ditglem 26100 tdeglem3 26112 q1pval 26208 reefgim 26508 relogoprlem 26647 eflogeq 26658 zetacvg 27072 lgsdir2 27388 lgsdchr 27413 2sq2 27491 2sqnn0 27496 negsdi 28096 brbtwn2 28934 ax5seglem4 28961 axeuclid 28992 axcontlem2 28994 axcontlem4 28996 axcontlem8 29000 clwwlknccat 30091 ex-fpar 30490 ipasslem11 30868 hhssnv 31292 mayete3i 31756 idunop 32006 idhmop 32010 0lnfn 32013 lnopmi 32028 lnophsi 32029 lnopcoi 32031 hmops 32048 hmopm 32049 nlelshi 32088 cnlnadjlem2 32096 kbass6 32149 strlem3a 32280 hstrlem3a 32288 elrgspnlem2 33232 mndpluscn 33886 xrge0iifhom 33897 rezh 33931 probdsb 34403 resconn 35230 iscvm 35243 satfdmlem 35352 satffunlem1lem1 35386 satffunlem2lem1 35388 fwddifnval 36144 bj-bary1 37294 poimirlem15 37621 mbfposadd 37653 ftc1anclem3 37681 rrnmval 37814 dvhopaddN 41096 nnadddir 42283 cnreeu 42476 prjcrvfval 42617 pellex 42822 rmxfval 42891 rmyfval 42892 qirropth 42895 rmxycomplete 42905 jm2.15nn0 42991 rmxdioph 43004 expdiophlem2 43010 mendvsca 43175 deg1mhm 43188 mnringmulrvald 44222 addrval 44461 subrval 44462 fmulcl 45536 fmuldfeqlem1 45537 line 48581 itsclc0xyqsolr 48618 |
Copyright terms: Public domain | W3C validator |