Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveqan12d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | oveq12 7164 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
4 | 1, 2, 3 | syl2an 598 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 (class class class)co 7155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-iota 6298 df-fv 6347 df-ov 7158 |
This theorem is referenced by: oveqan12rd 7175 offval 7418 offval3 7692 odi 8220 omopth2 8225 oeoa 8238 ecovdi 8420 ackbij1lem9 9693 distrpi 10363 addpipq 10402 mulpipq 10405 lterpq 10435 reclem3pr 10514 1idsr 10563 mulcnsr 10601 mulid1 10682 1re 10684 mul02 10861 addcom 10869 mulsub 11126 mulsub2 11127 muleqadd 11327 divmuldiv 11383 div2sub 11508 addltmul 11915 xnegdi 12687 xadddilem 12733 fzsubel 12997 fzoval 13093 seqid3 13469 mulexp 13523 sqdiv 13542 hashdom 13795 hashun 13798 ccatfval 13977 splcl 14166 crim 14527 readd 14538 remullem 14540 imadd 14546 cjadd 14553 cjreim 14572 sqrtmul 14672 sqabsadd 14695 sqabssub 14696 absmul 14707 abs2dif 14745 bhmafibid1 14878 binom 15238 binomfallfac 15448 sinadd 15570 cosadd 15571 dvds2ln 15695 sadcaddlem 15861 bezoutlem4 15946 bezout 15947 absmulgcd 15953 gcddiv 15955 bezoutr1 15970 lcmgcd 16008 lcmfass 16047 nn0gcdsq 16152 crth 16175 pythagtriplem1 16213 pcqmul 16250 4sqlem4a 16347 4sqlem4 16348 prdsplusgval 16809 prdsmulrval 16811 prdsdsval 16814 prdsvscaval 16815 idmhm 18036 0mhm 18055 resmhm 18056 prdspjmhm 18064 pwsdiagmhm 18066 gsumws2 18078 frmdup1 18100 eqgval 18401 idghm 18445 resghm 18446 mulgmhm 19021 mulgghm 19022 srglmhm 19358 srgrmhm 19359 ringlghm 19430 ringrghm 19431 gsumdixp 19435 isrhm 19549 issrngd 19705 lmodvsghm 19768 pwssplit2 19905 xrsdsval 20215 expmhm 20240 expghm 20270 mulgghm2 20271 mulgrhm 20272 cygznlem3 20342 asclghm 20650 psrmulfval 20718 evlslem4 20842 mpfrcl 20853 mamuval 21093 mamufv 21094 mvmulval 21248 mndifsplit 21341 mat2pmatmul 21436 decpmatmul 21477 fmval 22648 fmf 22650 flffval 22694 divcn 23574 rescncf 23603 htpyco1 23684 tcphcph 23942 rrxdsfival 24118 ehl2eudisval 24128 volun 24250 dyadval 24297 dvlip 24697 ftc1a 24741 ftc2ditglem 24749 tdeglem3 24762 tdeglem3OLD 24763 q1pval 24858 reefgim 25149 relogoprlem 25286 eflogeq 25297 zetacvg 25704 lgsdir2 26018 lgsdchr 26043 2sq2 26121 2sqnn0 26126 brbtwn2 26803 ax5seglem4 26830 axeuclid 26861 axcontlem2 26863 axcontlem4 26865 axcontlem8 26869 clwwlknccat 27952 ex-fpar 28351 ipasslem11 28727 hhssnv 29151 mayete3i 29615 idunop 29865 idhmop 29869 0lnfn 29872 lnopmi 29887 lnophsi 29888 lnopcoi 29890 hmops 29907 hmopm 29908 nlelshi 29947 cnlnadjlem2 29955 kbass6 30008 strlem3a 30139 hstrlem3a 30147 mndpluscn 31401 xrge0iifhom 31412 rezh 31444 probdsb 31912 resconn 32728 iscvm 32741 satfdmlem 32850 satffunlem1lem1 32884 satffunlem2lem1 32886 fwddifnval 34040 bj-bary1 35032 poimirlem15 35378 mbfposadd 35410 ftc1anclem3 35438 rrnmval 35572 dvhopaddN 38716 nnadddir 39830 cnreeu 39963 pellex 40177 rmxfval 40246 rmyfval 40247 qirropth 40250 rmxycomplete 40259 jm2.15nn0 40345 rmxdioph 40358 expdiophlem2 40364 mendvsca 40536 deg1mhm 40552 mnringmulrvald 41336 addrval 41571 subrval 41572 fmulcl 42617 fmuldfeqlem1 42618 idmgmhm 44803 resmgmhm 44813 rhmval 44938 line 45539 itsclc0xyqsolr 45576 |
Copyright terms: Public domain | W3C validator |