| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | oveq12 7412 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 (class class class)co 7403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 |
| This theorem is referenced by: oveqan12rd 7423 offval 7678 offval3 7979 odi 8589 omopth2 8594 oeoa 8607 ecovdi 8837 ackbij1lem9 10239 distrpi 10910 addpipq 10949 mulpipq 10952 lterpq 10982 reclem3pr 11061 1idsr 11110 mulcnsr 11148 mulrid 11231 1re 11233 mul02 11411 addcom 11419 mulsub 11678 mulsub2 11679 muleqadd 11879 divmuldiv 11939 div2sub 12064 addltmul 12475 xnegdi 13262 xadddilem 13308 fzsubel 13575 fzoval 13675 seqid3 14062 mulexp 14117 sqdiv 14137 hashdom 14395 hashun 14398 ccatfval 14589 splcl 14768 crim 15132 readd 15143 remullem 15145 imadd 15151 cjadd 15158 cjreim 15177 sqrtmul 15276 sqabsadd 15299 sqabssub 15300 absmul 15311 abs2dif 15349 bhmafibid1 15482 binom 15844 binomfallfac 16055 sinadd 16180 cosadd 16181 dvds2ln 16306 sadcaddlem 16474 bezoutlem4 16559 bezout 16560 absmulgcd 16566 gcddiv 16568 bezoutr1 16586 lcmgcd 16624 lcmfass 16663 nn0gcdsq 16769 crth 16795 pythagtriplem1 16834 pcqmul 16871 4sqlem4a 16969 4sqlem4 16970 prdsplusgval 17485 prdsmulrval 17487 prdsdsval 17490 prdsvscaval 17491 idmgmhm 18677 resmgmhm 18687 idmhm 18771 0mhm 18795 resmhm 18796 prdspjmhm 18805 pwsdiagmhm 18807 gsumws2 18818 frmdup1 18840 eqgval 19158 idghm 19212 resghm 19213 mulgmhm 19806 mulgghm 19807 srglmhm 20179 srgrmhm 20180 ringlghm 20270 ringrghm 20271 gsumdixp 20277 isrhm 20436 rhmval 20458 issrngd 20813 lmodvsghm 20878 pwssplit2 21016 xrsdsval 21376 expmhm 21402 expghm 21434 mulgghm2 21435 mulgrhm 21436 pzriprnglem4 21443 cygznlem3 21528 asclghm 21841 psrmulfval 21901 evlslem4 22032 mpfrcl 22041 mamuval 22329 mamufv 22330 mvmulval 22479 mndifsplit 22572 mat2pmatmul 22667 decpmatmul 22708 fmval 23879 fmf 23881 flffval 23925 divcnOLD 24806 divcn 24808 rescncf 24839 htpyco1 24926 tcphcph 25187 rrxdsfival 25363 ehl2eudisval 25373 volun 25496 dyadval 25543 dvlip 25948 ftc1a 25994 ftc2ditglem 26002 tdeglem3 26014 q1pval 26110 reefgim 26410 relogoprlem 26550 eflogeq 26561 zetacvg 26975 lgsdir2 27291 lgsdchr 27316 2sq2 27394 2sqnn0 27399 negsdi 27999 brbtwn2 28830 ax5seglem4 28857 axeuclid 28888 axcontlem2 28890 axcontlem4 28892 axcontlem8 28896 clwwlknccat 29990 ex-fpar 30389 ipasslem11 30767 hhssnv 31191 mayete3i 31655 idunop 31905 idhmop 31909 0lnfn 31912 lnopmi 31927 lnophsi 31928 lnopcoi 31930 hmops 31947 hmopm 31948 nlelshi 31987 cnlnadjlem2 31995 kbass6 32048 strlem3a 32179 hstrlem3a 32187 elrgspnlem2 33184 mndpluscn 33903 xrge0iifhom 33914 rezh 33946 probdsb 34400 resconn 35214 iscvm 35227 satfdmlem 35336 satffunlem1lem1 35370 satffunlem2lem1 35372 fwddifnval 36127 bj-bary1 37276 poimirlem15 37605 mbfposadd 37637 ftc1anclem3 37665 rrnmval 37798 dvhopaddN 41079 nnadddir 42267 cnreeu 42460 prjcrvfval 42601 pellex 42805 rmxfval 42874 rmyfval 42875 qirropth 42878 rmxycomplete 42888 jm2.15nn0 42974 rmxdioph 42987 expdiophlem2 42993 mendvsca 43158 deg1mhm 43171 mnringmulrvald 44199 addrval 44438 subrval 44439 fmulcl 45558 fmuldfeqlem1 45559 line 48660 itsclc0xyqsolr 48697 |
| Copyright terms: Public domain | W3C validator |