Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveqan12d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | oveq12 7264 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: oveqan12rd 7275 offval 7520 offval3 7798 odi 8372 omopth2 8377 oeoa 8390 ecovdi 8572 ackbij1lem9 9915 distrpi 10585 addpipq 10624 mulpipq 10627 lterpq 10657 reclem3pr 10736 1idsr 10785 mulcnsr 10823 mulid1 10904 1re 10906 mul02 11083 addcom 11091 mulsub 11348 mulsub2 11349 muleqadd 11549 divmuldiv 11605 div2sub 11730 addltmul 12139 xnegdi 12911 xadddilem 12957 fzsubel 13221 fzoval 13317 seqid3 13695 mulexp 13750 sqdiv 13769 hashdom 14022 hashun 14025 ccatfval 14204 splcl 14393 crim 14754 readd 14765 remullem 14767 imadd 14773 cjadd 14780 cjreim 14799 sqrtmul 14899 sqabsadd 14922 sqabssub 14923 absmul 14934 abs2dif 14972 bhmafibid1 15105 binom 15470 binomfallfac 15679 sinadd 15801 cosadd 15802 dvds2ln 15926 sadcaddlem 16092 bezoutlem4 16178 bezout 16179 absmulgcd 16185 gcddiv 16187 bezoutr1 16202 lcmgcd 16240 lcmfass 16279 nn0gcdsq 16384 crth 16407 pythagtriplem1 16445 pcqmul 16482 4sqlem4a 16580 4sqlem4 16581 prdsplusgval 17101 prdsmulrval 17103 prdsdsval 17106 prdsvscaval 17107 idmhm 18354 0mhm 18373 resmhm 18374 prdspjmhm 18382 pwsdiagmhm 18384 gsumws2 18396 frmdup1 18418 eqgval 18720 idghm 18764 resghm 18765 mulgmhm 19344 mulgghm 19345 srglmhm 19686 srgrmhm 19687 ringlghm 19758 ringrghm 19759 gsumdixp 19763 isrhm 19880 issrngd 20036 lmodvsghm 20099 pwssplit2 20237 xrsdsval 20554 expmhm 20579 expghm 20609 mulgghm2 20610 mulgrhm 20611 cygznlem3 20689 asclghm 20997 psrmulfval 21064 evlslem4 21194 mpfrcl 21205 mamuval 21445 mamufv 21446 mvmulval 21600 mndifsplit 21693 mat2pmatmul 21788 decpmatmul 21829 fmval 23002 fmf 23004 flffval 23048 divcn 23937 rescncf 23966 htpyco1 24047 tcphcph 24306 rrxdsfival 24482 ehl2eudisval 24492 volun 24614 dyadval 24661 dvlip 25062 ftc1a 25106 ftc2ditglem 25114 tdeglem3 25127 tdeglem3OLD 25128 q1pval 25223 reefgim 25514 relogoprlem 25651 eflogeq 25662 zetacvg 26069 lgsdir2 26383 lgsdchr 26408 2sq2 26486 2sqnn0 26491 brbtwn2 27176 ax5seglem4 27203 axeuclid 27234 axcontlem2 27236 axcontlem4 27238 axcontlem8 27242 clwwlknccat 28328 ex-fpar 28727 ipasslem11 29103 hhssnv 29527 mayete3i 29991 idunop 30241 idhmop 30245 0lnfn 30248 lnopmi 30263 lnophsi 30264 lnopcoi 30266 hmops 30283 hmopm 30284 nlelshi 30323 cnlnadjlem2 30331 kbass6 30384 strlem3a 30515 hstrlem3a 30523 mndpluscn 31778 xrge0iifhom 31789 rezh 31821 probdsb 32289 resconn 33108 iscvm 33121 satfdmlem 33230 satffunlem1lem1 33264 satffunlem2lem1 33266 fwddifnval 34392 bj-bary1 35410 poimirlem15 35719 mbfposadd 35751 ftc1anclem3 35779 rrnmval 35913 dvhopaddN 39055 nnadddir 40221 cnreeu 40359 pellex 40573 rmxfval 40642 rmyfval 40643 qirropth 40646 rmxycomplete 40655 jm2.15nn0 40741 rmxdioph 40754 expdiophlem2 40760 mendvsca 40932 deg1mhm 40948 mnringmulrvald 41734 addrval 41973 subrval 41974 fmulcl 43012 fmuldfeqlem1 43013 idmgmhm 45230 resmgmhm 45240 rhmval 45365 line 45966 itsclc0xyqsolr 46003 |
Copyright terms: Public domain | W3C validator |