| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | oveq12 7358 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: oveqan12rd 7369 offval 7622 offval3 7917 odi 8497 omopth2 8502 oeoa 8515 ecovdi 8752 ackbij1lem9 10121 distrpi 10792 addpipq 10831 mulpipq 10834 lterpq 10864 reclem3pr 10943 1idsr 10992 mulcnsr 11030 mulrid 11113 1re 11115 mul02 11294 addcom 11302 mulsub 11563 mulsub2 11564 muleqadd 11764 divmuldiv 11824 div2sub 11949 addltmul 12360 xnegdi 13150 xadddilem 13196 fzsubel 13463 fzoval 13563 seqid3 13953 mulexp 14008 sqdiv 14028 hashdom 14286 hashun 14289 ccatfval 14480 splcl 14658 crim 15022 readd 15033 remullem 15035 imadd 15041 cjadd 15048 cjreim 15067 sqrtmul 15166 sqabsadd 15189 sqabssub 15190 absmul 15201 abs2dif 15240 bhmafibid1 15375 binom 15737 binomfallfac 15948 sinadd 16073 cosadd 16074 dvds2ln 16200 sadcaddlem 16368 bezoutlem4 16453 bezout 16454 absmulgcd 16460 gcddiv 16462 bezoutr1 16480 lcmgcd 16518 lcmfass 16557 nn0gcdsq 16663 crth 16689 pythagtriplem1 16728 pcqmul 16765 4sqlem4a 16863 4sqlem4 16864 prdsplusgval 17377 prdsmulrval 17379 prdsdsval 17382 prdsvscaval 17383 idmgmhm 18575 resmgmhm 18585 idmhm 18669 0mhm 18693 resmhm 18694 prdspjmhm 18703 pwsdiagmhm 18705 gsumws2 18716 frmdup1 18738 eqgval 19056 idghm 19110 resghm 19111 mulgmhm 19706 mulgghm 19707 srglmhm 20106 srgrmhm 20107 ringlghm 20197 ringrghm 20198 gsumdixp 20204 isrhm 20363 rhmval 20385 issrngd 20740 lmodvsghm 20826 pwssplit2 20964 xrsdsval 21317 expmhm 21343 expghm 21382 mulgghm2 21383 mulgrhm 21384 pzriprnglem4 21391 cygznlem3 21476 asclghm 21790 psrmulfval 21850 evlslem4 21981 mpfrcl 21990 mamuval 22278 mamufv 22279 mvmulval 22428 mndifsplit 22521 mat2pmatmul 22616 decpmatmul 22657 fmval 23828 fmf 23830 flffval 23874 divcnOLD 24755 divcn 24757 rescncf 24788 htpyco1 24875 tcphcph 25135 rrxdsfival 25311 ehl2eudisval 25321 volun 25444 dyadval 25491 dvlip 25896 ftc1a 25942 ftc2ditglem 25950 tdeglem3 25962 q1pval 26058 reefgim 26358 relogoprlem 26498 eflogeq 26509 zetacvg 26923 lgsdir2 27239 lgsdchr 27264 2sq2 27342 2sqnn0 27347 negsdi 27963 brbtwn2 28854 ax5seglem4 28881 axeuclid 28912 axcontlem2 28914 axcontlem4 28916 axcontlem8 28920 clwwlknccat 30011 ex-fpar 30410 ipasslem11 30788 hhssnv 31212 mayete3i 31676 idunop 31926 idhmop 31930 0lnfn 31933 lnopmi 31948 lnophsi 31949 lnopcoi 31951 hmops 31968 hmopm 31969 nlelshi 32008 cnlnadjlem2 32016 kbass6 32069 strlem3a 32200 hstrlem3a 32208 elrgspnlem2 33192 mndpluscn 33909 xrge0iifhom 33920 rezh 33952 probdsb 34406 resconn 35239 iscvm 35252 satfdmlem 35361 satffunlem1lem1 35395 satffunlem2lem1 35397 fwddifnval 36157 bj-bary1 37306 poimirlem15 37635 mbfposadd 37667 ftc1anclem3 37695 rrnmval 37828 dvhopaddN 41113 nnadddir 42263 cnreeu 42483 prjcrvfval 42624 pellex 42828 rmxfval 42897 rmyfval 42898 qirropth 42901 rmxycomplete 42910 jm2.15nn0 42996 rmxdioph 43009 expdiophlem2 43015 mendvsca 43180 deg1mhm 43193 mnringmulrvald 44220 addrval 44459 subrval 44460 fmulcl 45582 fmuldfeqlem1 45583 line 48737 itsclc0xyqsolr 48774 |
| Copyright terms: Public domain | W3C validator |