| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | oveq12 7355 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: oveqan12rd 7366 offval 7619 offval3 7914 odi 8494 omopth2 8499 oeoa 8512 ecovdi 8749 ackbij1lem9 10118 distrpi 10789 addpipq 10828 mulpipq 10831 lterpq 10861 reclem3pr 10940 1idsr 10989 mulcnsr 11027 mulrid 11110 1re 11112 mul02 11291 addcom 11299 mulsub 11560 mulsub2 11561 muleqadd 11761 divmuldiv 11821 div2sub 11946 addltmul 12357 xnegdi 13147 xadddilem 13193 fzsubel 13460 fzoval 13560 seqid3 13953 mulexp 14008 sqdiv 14028 hashdom 14286 hashun 14289 ccatfval 14480 splcl 14659 crim 15022 readd 15033 remullem 15035 imadd 15041 cjadd 15048 cjreim 15067 sqrtmul 15166 sqabsadd 15189 sqabssub 15190 absmul 15201 abs2dif 15240 bhmafibid1 15375 binom 15737 binomfallfac 15948 sinadd 16073 cosadd 16074 dvds2ln 16200 sadcaddlem 16368 bezoutlem4 16453 bezout 16454 absmulgcd 16460 gcddiv 16462 bezoutr1 16480 lcmgcd 16518 lcmfass 16557 nn0gcdsq 16663 crth 16689 pythagtriplem1 16728 pcqmul 16765 4sqlem4a 16863 4sqlem4 16864 prdsplusgval 17377 prdsmulrval 17379 prdsdsval 17382 prdsvscaval 17383 idmgmhm 18609 resmgmhm 18619 idmhm 18703 0mhm 18727 resmhm 18728 prdspjmhm 18737 pwsdiagmhm 18739 gsumws2 18750 frmdup1 18772 eqgval 19089 idghm 19143 resghm 19144 mulgmhm 19739 mulgghm 19740 srglmhm 20139 srgrmhm 20140 ringlghm 20230 ringrghm 20231 gsumdixp 20237 isrhm 20396 rhmval 20415 issrngd 20770 lmodvsghm 20856 pwssplit2 20994 xrsdsval 21347 expmhm 21373 expghm 21412 mulgghm2 21413 mulgrhm 21414 pzriprnglem4 21421 cygznlem3 21506 asclghm 21820 psrmulfval 21880 evlslem4 22011 mpfrcl 22020 mamuval 22308 mamufv 22309 mvmulval 22458 mndifsplit 22551 mat2pmatmul 22646 decpmatmul 22687 fmval 23858 fmf 23860 flffval 23904 divcnOLD 24784 divcn 24786 rescncf 24817 htpyco1 24904 tcphcph 25164 rrxdsfival 25340 ehl2eudisval 25350 volun 25473 dyadval 25520 dvlip 25925 ftc1a 25971 ftc2ditglem 25979 tdeglem3 25991 q1pval 26087 reefgim 26387 relogoprlem 26527 eflogeq 26538 zetacvg 26952 lgsdir2 27268 lgsdchr 27293 2sq2 27371 2sqnn0 27376 negsdi 27992 brbtwn2 28883 ax5seglem4 28910 axeuclid 28941 axcontlem2 28943 axcontlem4 28945 axcontlem8 28949 clwwlknccat 30043 ex-fpar 30442 ipasslem11 30820 hhssnv 31244 mayete3i 31708 idunop 31958 idhmop 31962 0lnfn 31965 lnopmi 31980 lnophsi 31981 lnopcoi 31983 hmops 32000 hmopm 32001 nlelshi 32040 cnlnadjlem2 32048 kbass6 32101 strlem3a 32232 hstrlem3a 32240 elrgspnlem2 33210 mndpluscn 33939 xrge0iifhom 33950 rezh 33982 probdsb 34435 resconn 35290 iscvm 35303 satfdmlem 35412 satffunlem1lem1 35446 satffunlem2lem1 35448 fwddifnval 36207 bj-bary1 37356 poimirlem15 37674 mbfposadd 37706 ftc1anclem3 37734 rrnmval 37867 dvhopaddN 41212 nnadddir 42362 cnreeu 42582 prjcrvfval 42723 pellex 42927 rmxfval 42996 rmyfval 42997 qirropth 43000 rmxycomplete 43009 jm2.15nn0 43095 rmxdioph 43108 expdiophlem2 43114 mendvsca 43279 deg1mhm 43292 mnringmulrvald 44319 addrval 44557 subrval 44558 fmulcl 45680 fmuldfeqlem1 45681 line 48832 itsclc0xyqsolr 48869 |
| Copyright terms: Public domain | W3C validator |