| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | oveq12 7399 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: oveqan12rd 7410 offval 7665 offval3 7964 odi 8546 omopth2 8551 oeoa 8564 ecovdi 8801 ackbij1lem9 10187 distrpi 10858 addpipq 10897 mulpipq 10900 lterpq 10930 reclem3pr 11009 1idsr 11058 mulcnsr 11096 mulrid 11179 1re 11181 mul02 11359 addcom 11367 mulsub 11628 mulsub2 11629 muleqadd 11829 divmuldiv 11889 div2sub 12014 addltmul 12425 xnegdi 13215 xadddilem 13261 fzsubel 13528 fzoval 13628 seqid3 14018 mulexp 14073 sqdiv 14093 hashdom 14351 hashun 14354 ccatfval 14545 splcl 14724 crim 15088 readd 15099 remullem 15101 imadd 15107 cjadd 15114 cjreim 15133 sqrtmul 15232 sqabsadd 15255 sqabssub 15256 absmul 15267 abs2dif 15306 bhmafibid1 15441 binom 15803 binomfallfac 16014 sinadd 16139 cosadd 16140 dvds2ln 16266 sadcaddlem 16434 bezoutlem4 16519 bezout 16520 absmulgcd 16526 gcddiv 16528 bezoutr1 16546 lcmgcd 16584 lcmfass 16623 nn0gcdsq 16729 crth 16755 pythagtriplem1 16794 pcqmul 16831 4sqlem4a 16929 4sqlem4 16930 prdsplusgval 17443 prdsmulrval 17445 prdsdsval 17448 prdsvscaval 17449 idmgmhm 18635 resmgmhm 18645 idmhm 18729 0mhm 18753 resmhm 18754 prdspjmhm 18763 pwsdiagmhm 18765 gsumws2 18776 frmdup1 18798 eqgval 19116 idghm 19170 resghm 19171 mulgmhm 19764 mulgghm 19765 srglmhm 20137 srgrmhm 20138 ringlghm 20228 ringrghm 20229 gsumdixp 20235 isrhm 20394 rhmval 20416 issrngd 20771 lmodvsghm 20836 pwssplit2 20974 xrsdsval 21334 expmhm 21360 expghm 21392 mulgghm2 21393 mulgrhm 21394 pzriprnglem4 21401 cygznlem3 21486 asclghm 21799 psrmulfval 21859 evlslem4 21990 mpfrcl 21999 mamuval 22287 mamufv 22288 mvmulval 22437 mndifsplit 22530 mat2pmatmul 22625 decpmatmul 22666 fmval 23837 fmf 23839 flffval 23883 divcnOLD 24764 divcn 24766 rescncf 24797 htpyco1 24884 tcphcph 25144 rrxdsfival 25320 ehl2eudisval 25330 volun 25453 dyadval 25500 dvlip 25905 ftc1a 25951 ftc2ditglem 25959 tdeglem3 25971 q1pval 26067 reefgim 26367 relogoprlem 26507 eflogeq 26518 zetacvg 26932 lgsdir2 27248 lgsdchr 27273 2sq2 27351 2sqnn0 27356 negsdi 27963 brbtwn2 28839 ax5seglem4 28866 axeuclid 28897 axcontlem2 28899 axcontlem4 28901 axcontlem8 28905 clwwlknccat 29999 ex-fpar 30398 ipasslem11 30776 hhssnv 31200 mayete3i 31664 idunop 31914 idhmop 31918 0lnfn 31921 lnopmi 31936 lnophsi 31937 lnopcoi 31939 hmops 31956 hmopm 31957 nlelshi 31996 cnlnadjlem2 32004 kbass6 32057 strlem3a 32188 hstrlem3a 32196 elrgspnlem2 33201 mndpluscn 33923 xrge0iifhom 33934 rezh 33966 probdsb 34420 resconn 35240 iscvm 35253 satfdmlem 35362 satffunlem1lem1 35396 satffunlem2lem1 35398 fwddifnval 36158 bj-bary1 37307 poimirlem15 37636 mbfposadd 37668 ftc1anclem3 37696 rrnmval 37829 dvhopaddN 41115 nnadddir 42265 cnreeu 42485 prjcrvfval 42626 pellex 42830 rmxfval 42899 rmyfval 42900 qirropth 42903 rmxycomplete 42913 jm2.15nn0 42999 rmxdioph 43012 expdiophlem2 43018 mendvsca 43183 deg1mhm 43196 mnringmulrvald 44223 addrval 44462 subrval 44463 fmulcl 45586 fmuldfeqlem1 45587 line 48725 itsclc0xyqsolr 48762 |
| Copyright terms: Public domain | W3C validator |