| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqan12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | oveq12 7396 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: oveqan12rd 7407 offval 7662 offval3 7961 odi 8543 omopth2 8548 oeoa 8561 ecovdi 8798 ackbij1lem9 10180 distrpi 10851 addpipq 10890 mulpipq 10893 lterpq 10923 reclem3pr 11002 1idsr 11051 mulcnsr 11089 mulrid 11172 1re 11174 mul02 11352 addcom 11360 mulsub 11621 mulsub2 11622 muleqadd 11822 divmuldiv 11882 div2sub 12007 addltmul 12418 xnegdi 13208 xadddilem 13254 fzsubel 13521 fzoval 13621 seqid3 14011 mulexp 14066 sqdiv 14086 hashdom 14344 hashun 14347 ccatfval 14538 splcl 14717 crim 15081 readd 15092 remullem 15094 imadd 15100 cjadd 15107 cjreim 15126 sqrtmul 15225 sqabsadd 15248 sqabssub 15249 absmul 15260 abs2dif 15299 bhmafibid1 15434 binom 15796 binomfallfac 16007 sinadd 16132 cosadd 16133 dvds2ln 16259 sadcaddlem 16427 bezoutlem4 16512 bezout 16513 absmulgcd 16519 gcddiv 16521 bezoutr1 16539 lcmgcd 16577 lcmfass 16616 nn0gcdsq 16722 crth 16748 pythagtriplem1 16787 pcqmul 16824 4sqlem4a 16922 4sqlem4 16923 prdsplusgval 17436 prdsmulrval 17438 prdsdsval 17441 prdsvscaval 17442 idmgmhm 18628 resmgmhm 18638 idmhm 18722 0mhm 18746 resmhm 18747 prdspjmhm 18756 pwsdiagmhm 18758 gsumws2 18769 frmdup1 18791 eqgval 19109 idghm 19163 resghm 19164 mulgmhm 19757 mulgghm 19758 srglmhm 20130 srgrmhm 20131 ringlghm 20221 ringrghm 20222 gsumdixp 20228 isrhm 20387 rhmval 20409 issrngd 20764 lmodvsghm 20829 pwssplit2 20967 xrsdsval 21327 expmhm 21353 expghm 21385 mulgghm2 21386 mulgrhm 21387 pzriprnglem4 21394 cygznlem3 21479 asclghm 21792 psrmulfval 21852 evlslem4 21983 mpfrcl 21992 mamuval 22280 mamufv 22281 mvmulval 22430 mndifsplit 22523 mat2pmatmul 22618 decpmatmul 22659 fmval 23830 fmf 23832 flffval 23876 divcnOLD 24757 divcn 24759 rescncf 24790 htpyco1 24877 tcphcph 25137 rrxdsfival 25313 ehl2eudisval 25323 volun 25446 dyadval 25493 dvlip 25898 ftc1a 25944 ftc2ditglem 25952 tdeglem3 25964 q1pval 26060 reefgim 26360 relogoprlem 26500 eflogeq 26511 zetacvg 26925 lgsdir2 27241 lgsdchr 27266 2sq2 27344 2sqnn0 27349 negsdi 27956 brbtwn2 28832 ax5seglem4 28859 axeuclid 28890 axcontlem2 28892 axcontlem4 28894 axcontlem8 28898 clwwlknccat 29992 ex-fpar 30391 ipasslem11 30769 hhssnv 31193 mayete3i 31657 idunop 31907 idhmop 31911 0lnfn 31914 lnopmi 31929 lnophsi 31930 lnopcoi 31932 hmops 31949 hmopm 31950 nlelshi 31989 cnlnadjlem2 31997 kbass6 32050 strlem3a 32181 hstrlem3a 32189 elrgspnlem2 33194 mndpluscn 33916 xrge0iifhom 33927 rezh 33959 probdsb 34413 resconn 35233 iscvm 35246 satfdmlem 35355 satffunlem1lem1 35389 satffunlem2lem1 35391 fwddifnval 36151 bj-bary1 37300 poimirlem15 37629 mbfposadd 37661 ftc1anclem3 37689 rrnmval 37822 dvhopaddN 41108 nnadddir 42258 cnreeu 42478 prjcrvfval 42619 pellex 42823 rmxfval 42892 rmyfval 42893 qirropth 42896 rmxycomplete 42906 jm2.15nn0 42992 rmxdioph 43005 expdiophlem2 43011 mendvsca 43176 deg1mhm 43189 mnringmulrvald 44216 addrval 44455 subrval 44456 fmulcl 45579 fmuldfeqlem1 45580 line 48721 itsclc0xyqsolr 48758 |
| Copyright terms: Public domain | W3C validator |