Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveqan12d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | oveq12 7338 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 (class class class)co 7329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-iota 6425 df-fv 6481 df-ov 7332 |
This theorem is referenced by: oveqan12rd 7349 offval 7596 offval3 7885 odi 8473 omopth2 8478 oeoa 8491 ecovdi 8677 ackbij1lem9 10077 distrpi 10747 addpipq 10786 mulpipq 10789 lterpq 10819 reclem3pr 10898 1idsr 10947 mulcnsr 10985 mulid1 11066 1re 11068 mul02 11246 addcom 11254 mulsub 11511 mulsub2 11512 muleqadd 11712 divmuldiv 11768 div2sub 11893 addltmul 12302 xnegdi 13075 xadddilem 13121 fzsubel 13385 fzoval 13481 seqid3 13860 mulexp 13915 sqdiv 13934 hashdom 14186 hashun 14189 ccatfval 14368 splcl 14555 crim 14917 readd 14928 remullem 14930 imadd 14936 cjadd 14943 cjreim 14962 sqrtmul 15062 sqabsadd 15085 sqabssub 15086 absmul 15097 abs2dif 15135 bhmafibid1 15268 binom 15633 binomfallfac 15842 sinadd 15964 cosadd 15965 dvds2ln 16089 sadcaddlem 16255 bezoutlem4 16341 bezout 16342 absmulgcd 16348 gcddiv 16350 bezoutr1 16363 lcmgcd 16401 lcmfass 16440 nn0gcdsq 16545 crth 16568 pythagtriplem1 16606 pcqmul 16643 4sqlem4a 16741 4sqlem4 16742 prdsplusgval 17273 prdsmulrval 17275 prdsdsval 17278 prdsvscaval 17279 idmhm 18528 0mhm 18547 resmhm 18548 prdspjmhm 18556 pwsdiagmhm 18558 gsumws2 18569 frmdup1 18591 eqgval 18893 idghm 18937 resghm 18938 mulgmhm 19516 mulgghm 19517 srglmhm 19858 srgrmhm 19859 ringlghm 19930 ringrghm 19931 gsumdixp 19935 isrhm 20052 issrngd 20219 lmodvsghm 20282 pwssplit2 20420 xrsdsval 20740 expmhm 20765 expghm 20795 mulgghm2 20796 mulgrhm 20797 cygznlem3 20875 asclghm 21185 psrmulfval 21252 evlslem4 21382 mpfrcl 21393 mamuval 21633 mamufv 21634 mvmulval 21790 mndifsplit 21883 mat2pmatmul 21978 decpmatmul 22019 fmval 23192 fmf 23194 flffval 23238 divcn 24129 rescncf 24158 htpyco1 24239 tcphcph 24499 rrxdsfival 24675 ehl2eudisval 24685 volun 24807 dyadval 24854 dvlip 25255 ftc1a 25299 ftc2ditglem 25307 tdeglem3 25320 tdeglem3OLD 25321 q1pval 25416 reefgim 25707 relogoprlem 25844 eflogeq 25855 zetacvg 26262 lgsdir2 26576 lgsdchr 26601 2sq2 26679 2sqnn0 26684 brbtwn2 27503 ax5seglem4 27530 axeuclid 27561 axcontlem2 27563 axcontlem4 27565 axcontlem8 27569 clwwlknccat 28656 ex-fpar 29055 ipasslem11 29431 hhssnv 29855 mayete3i 30319 idunop 30569 idhmop 30573 0lnfn 30576 lnopmi 30591 lnophsi 30592 lnopcoi 30594 hmops 30611 hmopm 30612 nlelshi 30651 cnlnadjlem2 30659 kbass6 30712 strlem3a 30843 hstrlem3a 30851 mndpluscn 32115 xrge0iifhom 32126 rezh 32160 probdsb 32630 resconn 33448 iscvm 33461 satfdmlem 33570 satffunlem1lem1 33604 satffunlem2lem1 33606 fwddifnval 34556 bj-bary1 35581 poimirlem15 35890 mbfposadd 35922 ftc1anclem3 35950 rrnmval 36084 dvhopaddN 39375 nnadddir 40550 cnreeu 40688 prjcrvfval 40718 pellex 40907 rmxfval 40976 rmyfval 40977 qirropth 40980 rmxycomplete 40990 jm2.15nn0 41076 rmxdioph 41089 expdiophlem2 41095 mendvsca 41267 deg1mhm 41283 mnringmulrvald 42155 addrval 42394 subrval 42395 fmulcl 43447 fmuldfeqlem1 43448 idmgmhm 45682 resmgmhm 45692 rhmval 45817 line 46418 itsclc0xyqsolr 46455 |
Copyright terms: Public domain | W3C validator |