| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpet3 | Structured version Visualization version GIF version | ||
| Description: Member Partition-Equivalence Theorem. Together with mpet 38957 mpet2 38958, mostly in its conventional cpet 38956 and cpet2 38955 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38968 with general 𝑅). (Contributed by Peter Mazsa, 4-May-2018.) (Revised by Peter Mazsa, 26-Sep-2021.) |
| Ref | Expression |
|---|---|
| mpet3 | ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldisjn0elb 38863 | . 2 ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( Disj (◡ E ↾ 𝐴) ∧ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴)) | |
| 2 | eqvrelqseqdisj3 38949 | . . 3 ⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) → Disj (◡ E ↾ 𝐴)) | |
| 3 | 2 | petlem 38930 | . 2 ⊢ (( Disj (◡ E ↾ 𝐴) ∧ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴)) |
| 4 | eqvreldmqs 38793 | . 2 ⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∅c0 4282 ∪ cuni 4858 E cep 5518 ◡ccnv 5618 dom cdm 5619 ↾ cres 5621 / cqs 8627 ≀ ccoss 38242 ∼ ccoels 38243 EqvRel weqvrel 38259 CoElEqvRel wcoeleqvrel 38261 Disj wdisjALTV 38276 ElDisj weldisj 38278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8630 df-qs 8634 df-coss 38533 df-coels 38534 df-refrel 38624 df-cnvrefrel 38639 df-symrel 38656 df-trrel 38690 df-eqvrel 38701 df-coeleqvrel 38703 df-funALTV 38800 df-disjALTV 38823 df-eldisj 38825 |
| This theorem is referenced by: mpet 38957 |
| Copyright terms: Public domain | W3C validator |