Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpet3 Structured version   Visualization version   GIF version

Theorem mpet3 38209
Description: Member Partition-Equivalence Theorem. Together with mpet 38212 mpet2 38213, mostly in its conventional cpet 38211 and cpet2 38210 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38223 with general 𝑅). (Contributed by Peter Mazsa, 4-May-2018.) (Revised by Peter Mazsa, 26-Sep-2021.)
Assertion
Ref Expression
mpet3 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))

Proof of Theorem mpet3
StepHypRef Expression
1 eldisjn0elb 38118 . 2 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( Disj ( E ↾ 𝐴) ∧ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴))
2 eqvrelqseqdisj3 38204 . . 3 (( EqvRel ≀ ( E ↾ 𝐴) ∧ (dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴) → Disj ( E ↾ 𝐴))
32petlem 38185 . 2 (( Disj ( E ↾ 𝐴) ∧ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ≀ ( E ↾ 𝐴) ∧ (dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴))
4 eqvreldmqs 38048 . 2 (( EqvRel ≀ ( E ↾ 𝐴) ∧ (dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
51, 3, 43bitri 297 1 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395   = wceq 1533  wcel 2098  c0 4315   cuni 4900   E cep 5570  ccnv 5666  dom cdm 5667  cres 5669   / cqs 8699  ccoss 37546  ccoels 37547   EqvRel weqvrel 37563   CoElEqvRel wcoeleqvrel 37565   Disj wdisjALTV 37580   ElDisj weldisj 37582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-id 5565  df-eprel 5571  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ec 8702  df-qs 8706  df-coss 37784  df-coels 37785  df-refrel 37885  df-cnvrefrel 37900  df-symrel 37917  df-trrel 37947  df-eqvrel 37958  df-coeleqvrel 37960  df-funALTV 38055  df-disjALTV 38078  df-eldisj 38080
This theorem is referenced by:  mpet  38212
  Copyright terms: Public domain W3C validator