Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpet3 Structured version   Visualization version   GIF version

Theorem mpet3 38534
Description: Member Partition-Equivalence Theorem. Together with mpet 38537 mpet2 38538, mostly in its conventional cpet 38536 and cpet2 38535 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38548 with general 𝑅). (Contributed by Peter Mazsa, 4-May-2018.) (Revised by Peter Mazsa, 26-Sep-2021.)
Assertion
Ref Expression
mpet3 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))

Proof of Theorem mpet3
StepHypRef Expression
1 eldisjn0elb 38443 . 2 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( Disj ( E ↾ 𝐴) ∧ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴))
2 eqvrelqseqdisj3 38529 . . 3 (( EqvRel ≀ ( E ↾ 𝐴) ∧ (dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴) → Disj ( E ↾ 𝐴))
32petlem 38510 . 2 (( Disj ( E ↾ 𝐴) ∧ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ≀ ( E ↾ 𝐴) ∧ (dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴))
4 eqvreldmqs 38373 . 2 (( EqvRel ≀ ( E ↾ 𝐴) ∧ (dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
51, 3, 43bitri 296 1 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 394   = wceq 1534  wcel 2099  c0 4325   cuni 4913   E cep 5585  ccnv 5681  dom cdm 5682  cres 5684   / cqs 8733  ccoss 37876  ccoels 37877   EqvRel weqvrel 37893   CoElEqvRel wcoeleqvrel 37895   Disj wdisjALTV 37910   ElDisj weldisj 37912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-id 5580  df-eprel 5586  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ec 8736  df-qs 8740  df-coss 38109  df-coels 38110  df-refrel 38210  df-cnvrefrel 38225  df-symrel 38242  df-trrel 38272  df-eqvrel 38283  df-coeleqvrel 38285  df-funALTV 38380  df-disjALTV 38403  df-eldisj 38405
This theorem is referenced by:  mpet  38537
  Copyright terms: Public domain W3C validator