Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpet3 Structured version   Visualization version   GIF version

Theorem mpet3 37701
Description: Member Partition-Equivalence Theorem. Together with mpet 37704 mpet2 37705, mostly in its conventional cpet 37703 and cpet2 37702 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 37715 with general 𝑅). (Contributed by Peter Mazsa, 4-May-2018.) (Revised by Peter Mazsa, 26-Sep-2021.)
Assertion
Ref Expression
mpet3 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))

Proof of Theorem mpet3
StepHypRef Expression
1 eldisjn0elb 37610 . 2 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( Disj ( E ↾ 𝐴) ∧ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴))
2 eqvrelqseqdisj3 37696 . . 3 (( EqvRel ≀ ( E ↾ 𝐴) ∧ (dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴) → Disj ( E ↾ 𝐴))
32petlem 37677 . 2 (( Disj ( E ↾ 𝐴) ∧ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ≀ ( E ↾ 𝐴) ∧ (dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴))
4 eqvreldmqs 37540 . 2 (( EqvRel ≀ ( E ↾ 𝐴) ∧ (dom ≀ ( E ↾ 𝐴) / ≀ ( E ↾ 𝐴)) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
51, 3, 43bitri 296 1 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ ( 𝐴 /𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1541  wcel 2106  c0 4322   cuni 4908   E cep 5579  ccnv 5675  dom cdm 5676  cres 5678   / cqs 8701  ccoss 37038  ccoels 37039   EqvRel weqvrel 37055   CoElEqvRel wcoeleqvrel 37057   Disj wdisjALTV 37072   ElDisj weldisj 37074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-eprel 5580  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ec 8704  df-qs 8708  df-coss 37276  df-coels 37277  df-refrel 37377  df-cnvrefrel 37392  df-symrel 37409  df-trrel 37439  df-eqvrel 37450  df-coeleqvrel 37452  df-funALTV 37547  df-disjALTV 37570  df-eldisj 37572
This theorem is referenced by:  mpet  37704
  Copyright terms: Public domain W3C validator