![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpet3 | Structured version Visualization version GIF version |
Description: Member Partition-Equivalence Theorem. Together with mpet 38537 mpet2 38538, mostly in its conventional cpet 38536 and cpet2 38535 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38548 with general 𝑅). (Contributed by Peter Mazsa, 4-May-2018.) (Revised by Peter Mazsa, 26-Sep-2021.) |
Ref | Expression |
---|---|
mpet3 | ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldisjn0elb 38443 | . 2 ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( Disj (◡ E ↾ 𝐴) ∧ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴)) | |
2 | eqvrelqseqdisj3 38529 | . . 3 ⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) → Disj (◡ E ↾ 𝐴)) | |
3 | 2 | petlem 38510 | . 2 ⊢ (( Disj (◡ E ↾ 𝐴) ∧ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴)) |
4 | eqvreldmqs 38373 | . 2 ⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
5 | 1, 3, 4 | 3bitri 296 | 1 ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∅c0 4325 ∪ cuni 4913 E cep 5585 ◡ccnv 5681 dom cdm 5682 ↾ cres 5684 / cqs 8733 ≀ ccoss 37876 ∼ ccoels 37877 EqvRel weqvrel 37893 CoElEqvRel wcoeleqvrel 37895 Disj wdisjALTV 37910 ElDisj weldisj 37912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-id 5580 df-eprel 5586 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ec 8736 df-qs 8740 df-coss 38109 df-coels 38110 df-refrel 38210 df-cnvrefrel 38225 df-symrel 38242 df-trrel 38272 df-eqvrel 38283 df-coeleqvrel 38285 df-funALTV 38380 df-disjALTV 38403 df-eldisj 38405 |
This theorem is referenced by: mpet 38537 |
Copyright terms: Public domain | W3C validator |