![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cpet2 | Structured version Visualization version GIF version |
Description: The conventional form of the Member Partition-Equivalence Theorem. In the conventional case there is no (general) disjoint and no (general) partition concept: mathematicians have called disjoint or partition what we call element disjoint or member partition, see also cpet 37696. Together with cpet 37696, mpet 37697 mpet2 37698, this is what we used to think of as the partition equivalence theorem (but cf. pet2 37708 with general 𝑅). (Contributed by Peter Mazsa, 30-Dec-2024.) |
Ref | Expression |
---|---|
cpet2 | ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldisjn0elb 37603 | . 2 ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( Disj (◡ E ↾ 𝐴) ∧ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴)) | |
2 | eqvrelqseqdisj3 37689 | . . 3 ⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) → Disj (◡ E ↾ 𝐴)) | |
3 | 2 | petlem 37670 | . 2 ⊢ (( Disj (◡ E ↾ 𝐴) ∧ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴)) |
4 | eqvreldmqs2 37534 | . 2 ⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
5 | 1, 3, 4 | 3bitri 296 | 1 ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∅c0 4321 ∪ cuni 4907 E cep 5578 ◡ccnv 5674 dom cdm 5675 ↾ cres 5677 / cqs 8698 ≀ ccoss 37031 ∼ ccoels 37032 EqvRel weqvrel 37048 Disj wdisjALTV 37065 ElDisj weldisj 37067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-eprel 5579 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ec 8701 df-qs 8705 df-coss 37269 df-coels 37270 df-refrel 37370 df-cnvrefrel 37385 df-symrel 37402 df-trrel 37432 df-eqvrel 37443 df-funALTV 37540 df-disjALTV 37563 df-eldisj 37565 |
This theorem is referenced by: cpet 37696 |
Copyright terms: Public domain | W3C validator |