| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cpet2 | Structured version Visualization version GIF version | ||
| Description: The conventional form of the Member Partition-Equivalence Theorem. In the conventional case there is no (general) disjoint and no (general) partition concept: mathematicians have called disjoint or partition what we call element disjoint or member partition, see also cpet 38820. Together with cpet 38820, mpet 38821 mpet2 38822, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38832 with general 𝑅). (Contributed by Peter Mazsa, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| cpet2 | ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldisjn0elb 38727 | . 2 ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( Disj (◡ E ↾ 𝐴) ∧ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴)) | |
| 2 | eqvrelqseqdisj3 38813 | . . 3 ⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) → Disj (◡ E ↾ 𝐴)) | |
| 3 | 2 | petlem 38794 | . 2 ⊢ (( Disj (◡ E ↾ 𝐴) ∧ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴)) |
| 4 | eqvreldmqs2 38658 | . 2 ⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | |
| 5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4284 ∪ cuni 4858 E cep 5518 ◡ccnv 5618 dom cdm 5619 ↾ cres 5621 / cqs 8624 ≀ ccoss 38159 ∼ ccoels 38160 EqvRel weqvrel 38176 Disj wdisjALTV 38193 ElDisj weldisj 38195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8627 df-qs 8631 df-coss 38392 df-coels 38393 df-refrel 38493 df-cnvrefrel 38508 df-symrel 38525 df-trrel 38555 df-eqvrel 38566 df-funALTV 38664 df-disjALTV 38687 df-eldisj 38689 |
| This theorem is referenced by: cpet 38820 |
| Copyright terms: Public domain | W3C validator |