Proof of Theorem fvcofneq
Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . 4
⊢ ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → 𝐺 Fn 𝐴) |
2 | | elinel1 4125 |
. . . . 5
⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) → 𝑋 ∈ 𝐴) |
3 | 2 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥)) → 𝑋 ∈ 𝐴) |
4 | | fvco2 6847 |
. . . 4
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
5 | 1, 3, 4 | syl2an 595 |
. . 3
⊢ (((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥))) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
6 | | simpr 484 |
. . . . 5
⊢ ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → 𝐾 Fn 𝐵) |
7 | | elinel2 4126 |
. . . . . 6
⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) → 𝑋 ∈ 𝐵) |
8 | 7 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥)) → 𝑋 ∈ 𝐵) |
9 | | fvco2 6847 |
. . . . 5
⊢ ((𝐾 Fn 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝐻 ∘ 𝐾)‘𝑋) = (𝐻‘(𝐾‘𝑋))) |
10 | 6, 8, 9 | syl2an 595 |
. . . 4
⊢ (((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥))) → ((𝐻 ∘ 𝐾)‘𝑋) = (𝐻‘(𝐾‘𝑋))) |
11 | | fveq2 6756 |
. . . . . . 7
⊢ ((𝐾‘𝑋) = (𝐺‘𝑋) → (𝐻‘(𝐾‘𝑋)) = (𝐻‘(𝐺‘𝑋))) |
12 | 11 | eqcoms 2746 |
. . . . . 6
⊢ ((𝐺‘𝑋) = (𝐾‘𝑋) → (𝐻‘(𝐾‘𝑋)) = (𝐻‘(𝐺‘𝑋))) |
13 | 12 | 3ad2ant2 1132 |
. . . . 5
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥)) → (𝐻‘(𝐾‘𝑋)) = (𝐻‘(𝐺‘𝑋))) |
14 | 13 | adantl 481 |
. . . 4
⊢ (((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥))) → (𝐻‘(𝐾‘𝑋)) = (𝐻‘(𝐺‘𝑋))) |
15 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝐺 Fn 𝐴 → 𝐺 Fn 𝐴) |
16 | | fnfvelrn 6940 |
. . . . . . . . . . . 12
⊢ ((𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐺‘𝑋) ∈ ran 𝐺) |
17 | 15, 2, 16 | syl2anr 596 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ 𝐺 Fn 𝐴) → (𝐺‘𝑋) ∈ ran 𝐺) |
18 | 17 | ex 412 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) → (𝐺 Fn 𝐴 → (𝐺‘𝑋) ∈ ran 𝐺)) |
19 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝐾 Fn 𝐵 → 𝐾 Fn 𝐵) |
20 | | fnfvelrn 6940 |
. . . . . . . . . . . 12
⊢ ((𝐾 Fn 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐾‘𝑋) ∈ ran 𝐾) |
21 | 19, 7, 20 | syl2anr 596 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ 𝐾 Fn 𝐵) → (𝐾‘𝑋) ∈ ran 𝐾) |
22 | 21 | ex 412 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) → (𝐾 Fn 𝐵 → (𝐾‘𝑋) ∈ ran 𝐾)) |
23 | 18, 22 | anim12d 608 |
. . . . . . . . 9
⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) → ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → ((𝐺‘𝑋) ∈ ran 𝐺 ∧ (𝐾‘𝑋) ∈ ran 𝐾))) |
24 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ ((𝐾‘𝑋) = (𝐺‘𝑋) → ((𝐾‘𝑋) ∈ ran 𝐾 ↔ (𝐺‘𝑋) ∈ ran 𝐾)) |
25 | 24 | eqcoms 2746 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑋) = (𝐾‘𝑋) → ((𝐾‘𝑋) ∈ ran 𝐾 ↔ (𝐺‘𝑋) ∈ ran 𝐾)) |
26 | 25 | anbi2d 628 |
. . . . . . . . . 10
⊢ ((𝐺‘𝑋) = (𝐾‘𝑋) → (((𝐺‘𝑋) ∈ ran 𝐺 ∧ (𝐾‘𝑋) ∈ ran 𝐾) ↔ ((𝐺‘𝑋) ∈ ran 𝐺 ∧ (𝐺‘𝑋) ∈ ran 𝐾))) |
27 | | elin 3899 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑋) ∈ (ran 𝐺 ∩ ran 𝐾) ↔ ((𝐺‘𝑋) ∈ ran 𝐺 ∧ (𝐺‘𝑋) ∈ ran 𝐾)) |
28 | 27 | biimpri 227 |
. . . . . . . . . 10
⊢ (((𝐺‘𝑋) ∈ ran 𝐺 ∧ (𝐺‘𝑋) ∈ ran 𝐾) → (𝐺‘𝑋) ∈ (ran 𝐺 ∩ ran 𝐾)) |
29 | 26, 28 | syl6bi 252 |
. . . . . . . . 9
⊢ ((𝐺‘𝑋) = (𝐾‘𝑋) → (((𝐺‘𝑋) ∈ ran 𝐺 ∧ (𝐾‘𝑋) ∈ ran 𝐾) → (𝐺‘𝑋) ∈ (ran 𝐺 ∩ ran 𝐾))) |
30 | 23, 29 | sylan9 507 |
. . . . . . . 8
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋)) → ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → (𝐺‘𝑋) ∈ (ran 𝐺 ∩ ran 𝐾))) |
31 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐺‘𝑋) → (𝐹‘𝑥) = (𝐹‘(𝐺‘𝑋))) |
32 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐺‘𝑋) → (𝐻‘𝑥) = (𝐻‘(𝐺‘𝑋))) |
33 | 31, 32 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐺‘𝑋) → ((𝐹‘𝑥) = (𝐻‘𝑥) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐻‘(𝐺‘𝑋)))) |
34 | 33 | rspcva 3550 |
. . . . . . . . . 10
⊢ (((𝐺‘𝑋) ∈ (ran 𝐺 ∩ ran 𝐾) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥)) → (𝐹‘(𝐺‘𝑋)) = (𝐻‘(𝐺‘𝑋))) |
35 | 34 | eqcomd 2744 |
. . . . . . . . 9
⊢ (((𝐺‘𝑋) ∈ (ran 𝐺 ∩ ran 𝐾) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥)) → (𝐻‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑋))) |
36 | 35 | ex 412 |
. . . . . . . 8
⊢ ((𝐺‘𝑋) ∈ (ran 𝐺 ∩ ran 𝐾) → (∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥) → (𝐻‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑋)))) |
37 | 30, 36 | syl6 35 |
. . . . . . 7
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋)) → ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → (∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥) → (𝐻‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑋))))) |
38 | 37 | com23 86 |
. . . . . 6
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋)) → (∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥) → ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → (𝐻‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑋))))) |
39 | 38 | 3impia 1115 |
. . . . 5
⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥)) → ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → (𝐻‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑋)))) |
40 | 39 | impcom 407 |
. . . 4
⊢ (((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥))) → (𝐻‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑋))) |
41 | 10, 14, 40 | 3eqtrrd 2783 |
. . 3
⊢ (((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥))) → (𝐹‘(𝐺‘𝑋)) = ((𝐻 ∘ 𝐾)‘𝑋)) |
42 | 5, 41 | eqtrd 2778 |
. 2
⊢ (((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥))) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋)) |
43 | 42 | ex 412 |
1
⊢ ((𝐺 Fn 𝐴 ∧ 𝐾 Fn 𝐵) → ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑥) = (𝐻‘𝑥)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) |