MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvcofneq Structured version   Visualization version   GIF version

Theorem fvcofneq 7094
Description: The values of two function compositions are equal if the values of the composed functions are pairwise equal. (Contributed by AV, 26-Jan-2019.)
Assertion
Ref Expression
fvcofneq ((𝐺 Fn 𝐴𝐾 Fn 𝐵) → ((𝑋 ∈ (𝐴𝐵) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥)) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝑥,𝐾   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem fvcofneq
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐺 Fn 𝐴𝐾 Fn 𝐵) → 𝐺 Fn 𝐴)
2 elinel1 4195 . . . . 5 (𝑋 ∈ (𝐴𝐵) → 𝑋𝐴)
323ad2ant1 1132 . . . 4 ((𝑋 ∈ (𝐴𝐵) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥)) → 𝑋𝐴)
4 fvco2 6988 . . . 4 ((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
51, 3, 4syl2an 595 . . 3 (((𝐺 Fn 𝐴𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴𝐵) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥))) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
6 simpr 484 . . . . 5 ((𝐺 Fn 𝐴𝐾 Fn 𝐵) → 𝐾 Fn 𝐵)
7 elinel2 4196 . . . . . 6 (𝑋 ∈ (𝐴𝐵) → 𝑋𝐵)
873ad2ant1 1132 . . . . 5 ((𝑋 ∈ (𝐴𝐵) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥)) → 𝑋𝐵)
9 fvco2 6988 . . . . 5 ((𝐾 Fn 𝐵𝑋𝐵) → ((𝐻𝐾)‘𝑋) = (𝐻‘(𝐾𝑋)))
106, 8, 9syl2an 595 . . . 4 (((𝐺 Fn 𝐴𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴𝐵) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥))) → ((𝐻𝐾)‘𝑋) = (𝐻‘(𝐾𝑋)))
11 fveq2 6891 . . . . . . 7 ((𝐾𝑋) = (𝐺𝑋) → (𝐻‘(𝐾𝑋)) = (𝐻‘(𝐺𝑋)))
1211eqcoms 2739 . . . . . 6 ((𝐺𝑋) = (𝐾𝑋) → (𝐻‘(𝐾𝑋)) = (𝐻‘(𝐺𝑋)))
13123ad2ant2 1133 . . . . 5 ((𝑋 ∈ (𝐴𝐵) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥)) → (𝐻‘(𝐾𝑋)) = (𝐻‘(𝐺𝑋)))
1413adantl 481 . . . 4 (((𝐺 Fn 𝐴𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴𝐵) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥))) → (𝐻‘(𝐾𝑋)) = (𝐻‘(𝐺𝑋)))
15 id 22 . . . . . . . . . . . 12 (𝐺 Fn 𝐴𝐺 Fn 𝐴)
16 fnfvelrn 7082 . . . . . . . . . . . 12 ((𝐺 Fn 𝐴𝑋𝐴) → (𝐺𝑋) ∈ ran 𝐺)
1715, 2, 16syl2anr 596 . . . . . . . . . . 11 ((𝑋 ∈ (𝐴𝐵) ∧ 𝐺 Fn 𝐴) → (𝐺𝑋) ∈ ran 𝐺)
1817ex 412 . . . . . . . . . 10 (𝑋 ∈ (𝐴𝐵) → (𝐺 Fn 𝐴 → (𝐺𝑋) ∈ ran 𝐺))
19 id 22 . . . . . . . . . . . 12 (𝐾 Fn 𝐵𝐾 Fn 𝐵)
20 fnfvelrn 7082 . . . . . . . . . . . 12 ((𝐾 Fn 𝐵𝑋𝐵) → (𝐾𝑋) ∈ ran 𝐾)
2119, 7, 20syl2anr 596 . . . . . . . . . . 11 ((𝑋 ∈ (𝐴𝐵) ∧ 𝐾 Fn 𝐵) → (𝐾𝑋) ∈ ran 𝐾)
2221ex 412 . . . . . . . . . 10 (𝑋 ∈ (𝐴𝐵) → (𝐾 Fn 𝐵 → (𝐾𝑋) ∈ ran 𝐾))
2318, 22anim12d 608 . . . . . . . . 9 (𝑋 ∈ (𝐴𝐵) → ((𝐺 Fn 𝐴𝐾 Fn 𝐵) → ((𝐺𝑋) ∈ ran 𝐺 ∧ (𝐾𝑋) ∈ ran 𝐾)))
24 eleq1 2820 . . . . . . . . . . . 12 ((𝐾𝑋) = (𝐺𝑋) → ((𝐾𝑋) ∈ ran 𝐾 ↔ (𝐺𝑋) ∈ ran 𝐾))
2524eqcoms 2739 . . . . . . . . . . 11 ((𝐺𝑋) = (𝐾𝑋) → ((𝐾𝑋) ∈ ran 𝐾 ↔ (𝐺𝑋) ∈ ran 𝐾))
2625anbi2d 628 . . . . . . . . . 10 ((𝐺𝑋) = (𝐾𝑋) → (((𝐺𝑋) ∈ ran 𝐺 ∧ (𝐾𝑋) ∈ ran 𝐾) ↔ ((𝐺𝑋) ∈ ran 𝐺 ∧ (𝐺𝑋) ∈ ran 𝐾)))
27 elin 3964 . . . . . . . . . . 11 ((𝐺𝑋) ∈ (ran 𝐺 ∩ ran 𝐾) ↔ ((𝐺𝑋) ∈ ran 𝐺 ∧ (𝐺𝑋) ∈ ran 𝐾))
2827biimpri 227 . . . . . . . . . 10 (((𝐺𝑋) ∈ ran 𝐺 ∧ (𝐺𝑋) ∈ ran 𝐾) → (𝐺𝑋) ∈ (ran 𝐺 ∩ ran 𝐾))
2926, 28biimtrdi 252 . . . . . . . . 9 ((𝐺𝑋) = (𝐾𝑋) → (((𝐺𝑋) ∈ ran 𝐺 ∧ (𝐾𝑋) ∈ ran 𝐾) → (𝐺𝑋) ∈ (ran 𝐺 ∩ ran 𝐾)))
3023, 29sylan9 507 . . . . . . . 8 ((𝑋 ∈ (𝐴𝐵) ∧ (𝐺𝑋) = (𝐾𝑋)) → ((𝐺 Fn 𝐴𝐾 Fn 𝐵) → (𝐺𝑋) ∈ (ran 𝐺 ∩ ran 𝐾)))
31 fveq2 6891 . . . . . . . . . . . 12 (𝑥 = (𝐺𝑋) → (𝐹𝑥) = (𝐹‘(𝐺𝑋)))
32 fveq2 6891 . . . . . . . . . . . 12 (𝑥 = (𝐺𝑋) → (𝐻𝑥) = (𝐻‘(𝐺𝑋)))
3331, 32eqeq12d 2747 . . . . . . . . . . 11 (𝑥 = (𝐺𝑋) → ((𝐹𝑥) = (𝐻𝑥) ↔ (𝐹‘(𝐺𝑋)) = (𝐻‘(𝐺𝑋))))
3433rspcva 3610 . . . . . . . . . 10 (((𝐺𝑋) ∈ (ran 𝐺 ∩ ran 𝐾) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥)) → (𝐹‘(𝐺𝑋)) = (𝐻‘(𝐺𝑋)))
3534eqcomd 2737 . . . . . . . . 9 (((𝐺𝑋) ∈ (ran 𝐺 ∩ ran 𝐾) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥)) → (𝐻‘(𝐺𝑋)) = (𝐹‘(𝐺𝑋)))
3635ex 412 . . . . . . . 8 ((𝐺𝑋) ∈ (ran 𝐺 ∩ ran 𝐾) → (∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥) → (𝐻‘(𝐺𝑋)) = (𝐹‘(𝐺𝑋))))
3730, 36syl6 35 . . . . . . 7 ((𝑋 ∈ (𝐴𝐵) ∧ (𝐺𝑋) = (𝐾𝑋)) → ((𝐺 Fn 𝐴𝐾 Fn 𝐵) → (∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥) → (𝐻‘(𝐺𝑋)) = (𝐹‘(𝐺𝑋)))))
3837com23 86 . . . . . 6 ((𝑋 ∈ (𝐴𝐵) ∧ (𝐺𝑋) = (𝐾𝑋)) → (∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥) → ((𝐺 Fn 𝐴𝐾 Fn 𝐵) → (𝐻‘(𝐺𝑋)) = (𝐹‘(𝐺𝑋)))))
39383impia 1116 . . . . 5 ((𝑋 ∈ (𝐴𝐵) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥)) → ((𝐺 Fn 𝐴𝐾 Fn 𝐵) → (𝐻‘(𝐺𝑋)) = (𝐹‘(𝐺𝑋))))
4039impcom 407 . . . 4 (((𝐺 Fn 𝐴𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴𝐵) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥))) → (𝐻‘(𝐺𝑋)) = (𝐹‘(𝐺𝑋)))
4110, 14, 403eqtrrd 2776 . . 3 (((𝐺 Fn 𝐴𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴𝐵) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥))) → (𝐹‘(𝐺𝑋)) = ((𝐻𝐾)‘𝑋))
425, 41eqtrd 2771 . 2 (((𝐺 Fn 𝐴𝐾 Fn 𝐵) ∧ (𝑋 ∈ (𝐴𝐵) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥))) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋))
4342ex 412 1 ((𝐺 Fn 𝐴𝐾 Fn 𝐵) → ((𝑋 ∈ (𝐴𝐵) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑥 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑥) = (𝐻𝑥)) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  cin 3947  ran crn 5677  ccom 5680   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  fvcosymgeq  19342
  Copyright terms: Public domain W3C validator