MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimampo Structured version   Visualization version   GIF version

Theorem elimampo 7587
Description: Membership in the image of an operation. (Contributed by SN, 27-Apr-2025.)
Hypotheses
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
elimampo.d (𝜑𝐷𝑉)
elimampo.x (𝜑𝑋𝐴)
elimampo.y (𝜑𝑌𝐵)
Assertion
Ref Expression
elimampo (𝜑 → (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ ∃𝑥𝑋𝑦𝑌 𝐷 = 𝐶))
Distinct variable groups:   𝑦,𝐴,𝑥   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem elimampo
StepHypRef Expression
1 df-ima 5713 . . . 4 (𝐹 “ (𝑋 × 𝑌)) = ran (𝐹 ↾ (𝑋 × 𝑌))
21eleq2i 2836 . . 3 (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ 𝐷 ∈ ran (𝐹 ↾ (𝑋 × 𝑌)))
3 rngop.1 . . . . . . 7 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
43reseq1i 6005 . . . . . 6 (𝐹 ↾ (𝑋 × 𝑌)) = ((𝑥𝐴, 𝑦𝐵𝐶) ↾ (𝑋 × 𝑌))
5 elimampo.x . . . . . . 7 (𝜑𝑋𝐴)
6 elimampo.y . . . . . . 7 (𝜑𝑌𝐵)
7 resmpo 7570 . . . . . . 7 ((𝑋𝐴𝑌𝐵) → ((𝑥𝐴, 𝑦𝐵𝐶) ↾ (𝑋 × 𝑌)) = (𝑥𝑋, 𝑦𝑌𝐶))
85, 6, 7syl2anc 583 . . . . . 6 (𝜑 → ((𝑥𝐴, 𝑦𝐵𝐶) ↾ (𝑋 × 𝑌)) = (𝑥𝑋, 𝑦𝑌𝐶))
94, 8eqtrid 2792 . . . . 5 (𝜑 → (𝐹 ↾ (𝑋 × 𝑌)) = (𝑥𝑋, 𝑦𝑌𝐶))
109rneqd 5963 . . . 4 (𝜑 → ran (𝐹 ↾ (𝑋 × 𝑌)) = ran (𝑥𝑋, 𝑦𝑌𝐶))
1110eleq2d 2830 . . 3 (𝜑 → (𝐷 ∈ ran (𝐹 ↾ (𝑋 × 𝑌)) ↔ 𝐷 ∈ ran (𝑥𝑋, 𝑦𝑌𝐶)))
122, 11bitrid 283 . 2 (𝜑 → (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ 𝐷 ∈ ran (𝑥𝑋, 𝑦𝑌𝐶)))
13 elimampo.d . . 3 (𝜑𝐷𝑉)
14 eqid 2740 . . . 4 (𝑥𝑋, 𝑦𝑌𝐶) = (𝑥𝑋, 𝑦𝑌𝐶)
1514elrnmpog 7585 . . 3 (𝐷𝑉 → (𝐷 ∈ ran (𝑥𝑋, 𝑦𝑌𝐶) ↔ ∃𝑥𝑋𝑦𝑌 𝐷 = 𝐶))
1613, 15syl 17 . 2 (𝜑 → (𝐷 ∈ ran (𝑥𝑋, 𝑦𝑌𝐶) ↔ ∃𝑥𝑋𝑦𝑌 𝐷 = 𝐶))
1712, 16bitrd 279 1 (𝜑 → (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ ∃𝑥𝑋𝑦𝑌 𝐷 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wrex 3076  wss 3976   × cxp 5698  ran crn 5701  cres 5702  cima 5703  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  psdmul  22193
  Copyright terms: Public domain W3C validator