| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimampo | Structured version Visualization version GIF version | ||
| Description: Membership in the image of an operation. (Contributed by SN, 27-Apr-2025.) |
| Ref | Expression |
|---|---|
| rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| elimampo.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| elimampo.x | ⊢ (𝜑 → 𝑋 ⊆ 𝐴) |
| elimampo.y | ⊢ (𝜑 → 𝑌 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| elimampo | ⊢ (𝜑 → (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝐷 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5651 | . . . 4 ⊢ (𝐹 “ (𝑋 × 𝑌)) = ran (𝐹 ↾ (𝑋 × 𝑌)) | |
| 2 | 1 | eleq2i 2820 | . . 3 ⊢ (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ 𝐷 ∈ ran (𝐹 ↾ (𝑋 × 𝑌))) |
| 3 | rngop.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 4 | 3 | reseq1i 5946 | . . . . . 6 ⊢ (𝐹 ↾ (𝑋 × 𝑌)) = ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ↾ (𝑋 × 𝑌)) |
| 5 | elimampo.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ 𝐴) | |
| 6 | elimampo.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝐵) | |
| 7 | resmpo 7509 | . . . . . . 7 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶)) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶)) |
| 9 | 4, 8 | eqtrid 2776 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶)) |
| 10 | 9 | rneqd 5902 | . . . 4 ⊢ (𝜑 → ran (𝐹 ↾ (𝑋 × 𝑌)) = ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶)) |
| 11 | 10 | eleq2d 2814 | . . 3 ⊢ (𝜑 → (𝐷 ∈ ran (𝐹 ↾ (𝑋 × 𝑌)) ↔ 𝐷 ∈ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶))) |
| 12 | 2, 11 | bitrid 283 | . 2 ⊢ (𝜑 → (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ 𝐷 ∈ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶))) |
| 13 | elimampo.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 14 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) | |
| 15 | 14 | elrnmpog 7524 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (𝐷 ∈ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝐷 = 𝐶)) |
| 16 | 13, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝐷 ∈ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝐷 = 𝐶)) |
| 17 | 12, 16 | bitrd 279 | 1 ⊢ (𝜑 → (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝐷 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 × cxp 5636 ran crn 5639 ↾ cres 5640 “ cima 5641 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-oprab 7391 df-mpo 7392 |
| This theorem is referenced by: psdmul 22053 elrgspnlem2 33194 |
| Copyright terms: Public domain | W3C validator |