MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimampo Structured version   Visualization version   GIF version

Theorem elimampo 7558
Description: Membership in the image of an operation. (Contributed by SN, 27-Apr-2025.)
Hypotheses
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
elimampo.d (𝜑𝐷𝑉)
elimampo.x (𝜑𝑋𝐴)
elimampo.y (𝜑𝑌𝐵)
Assertion
Ref Expression
elimampo (𝜑 → (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ ∃𝑥𝑋𝑦𝑌 𝐷 = 𝐶))
Distinct variable groups:   𝑦,𝐴,𝑥   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem elimampo
StepHypRef Expression
1 df-ima 5691 . . . 4 (𝐹 “ (𝑋 × 𝑌)) = ran (𝐹 ↾ (𝑋 × 𝑌))
21eleq2i 2817 . . 3 (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ 𝐷 ∈ ran (𝐹 ↾ (𝑋 × 𝑌)))
3 rngop.1 . . . . . . 7 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
43reseq1i 5981 . . . . . 6 (𝐹 ↾ (𝑋 × 𝑌)) = ((𝑥𝐴, 𝑦𝐵𝐶) ↾ (𝑋 × 𝑌))
5 elimampo.x . . . . . . 7 (𝜑𝑋𝐴)
6 elimampo.y . . . . . . 7 (𝜑𝑌𝐵)
7 resmpo 7540 . . . . . . 7 ((𝑋𝐴𝑌𝐵) → ((𝑥𝐴, 𝑦𝐵𝐶) ↾ (𝑋 × 𝑌)) = (𝑥𝑋, 𝑦𝑌𝐶))
85, 6, 7syl2anc 582 . . . . . 6 (𝜑 → ((𝑥𝐴, 𝑦𝐵𝐶) ↾ (𝑋 × 𝑌)) = (𝑥𝑋, 𝑦𝑌𝐶))
94, 8eqtrid 2777 . . . . 5 (𝜑 → (𝐹 ↾ (𝑋 × 𝑌)) = (𝑥𝑋, 𝑦𝑌𝐶))
109rneqd 5940 . . . 4 (𝜑 → ran (𝐹 ↾ (𝑋 × 𝑌)) = ran (𝑥𝑋, 𝑦𝑌𝐶))
1110eleq2d 2811 . . 3 (𝜑 → (𝐷 ∈ ran (𝐹 ↾ (𝑋 × 𝑌)) ↔ 𝐷 ∈ ran (𝑥𝑋, 𝑦𝑌𝐶)))
122, 11bitrid 282 . 2 (𝜑 → (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ 𝐷 ∈ ran (𝑥𝑋, 𝑦𝑌𝐶)))
13 elimampo.d . . 3 (𝜑𝐷𝑉)
14 eqid 2725 . . . 4 (𝑥𝑋, 𝑦𝑌𝐶) = (𝑥𝑋, 𝑦𝑌𝐶)
1514elrnmpog 7556 . . 3 (𝐷𝑉 → (𝐷 ∈ ran (𝑥𝑋, 𝑦𝑌𝐶) ↔ ∃𝑥𝑋𝑦𝑌 𝐷 = 𝐶))
1613, 15syl 17 . 2 (𝜑 → (𝐷 ∈ ran (𝑥𝑋, 𝑦𝑌𝐶) ↔ ∃𝑥𝑋𝑦𝑌 𝐷 = 𝐶))
1712, 16bitrd 278 1 (𝜑 → (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ ∃𝑥𝑋𝑦𝑌 𝐷 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  wrex 3059  wss 3944   × cxp 5676  ran crn 5679  cres 5680  cima 5681  cmpo 7421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-xp 5684  df-rel 5685  df-cnv 5686  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-oprab 7423  df-mpo 7424
This theorem is referenced by:  psdmul  22113
  Copyright terms: Public domain W3C validator