![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimampo | Structured version Visualization version GIF version |
Description: Membership in the image of an operation. (Contributed by SN, 27-Apr-2025.) |
Ref | Expression |
---|---|
rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
elimampo.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
elimampo.x | ⊢ (𝜑 → 𝑋 ⊆ 𝐴) |
elimampo.y | ⊢ (𝜑 → 𝑌 ⊆ 𝐵) |
Ref | Expression |
---|---|
elimampo | ⊢ (𝜑 → (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝐷 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5713 | . . . 4 ⊢ (𝐹 “ (𝑋 × 𝑌)) = ran (𝐹 ↾ (𝑋 × 𝑌)) | |
2 | 1 | eleq2i 2836 | . . 3 ⊢ (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ 𝐷 ∈ ran (𝐹 ↾ (𝑋 × 𝑌))) |
3 | rngop.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
4 | 3 | reseq1i 6005 | . . . . . 6 ⊢ (𝐹 ↾ (𝑋 × 𝑌)) = ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ↾ (𝑋 × 𝑌)) |
5 | elimampo.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ 𝐴) | |
6 | elimampo.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝐵) | |
7 | resmpo 7570 | . . . . . . 7 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶)) | |
8 | 5, 6, 7 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶)) |
9 | 4, 8 | eqtrid 2792 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶)) |
10 | 9 | rneqd 5963 | . . . 4 ⊢ (𝜑 → ran (𝐹 ↾ (𝑋 × 𝑌)) = ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶)) |
11 | 10 | eleq2d 2830 | . . 3 ⊢ (𝜑 → (𝐷 ∈ ran (𝐹 ↾ (𝑋 × 𝑌)) ↔ 𝐷 ∈ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶))) |
12 | 2, 11 | bitrid 283 | . 2 ⊢ (𝜑 → (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ 𝐷 ∈ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶))) |
13 | elimampo.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
14 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) | |
15 | 14 | elrnmpog 7585 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (𝐷 ∈ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝐷 = 𝐶)) |
16 | 13, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝐷 ∈ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝐷 = 𝐶)) |
17 | 12, 16 | bitrd 279 | 1 ⊢ (𝜑 → (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝐷 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 × cxp 5698 ran crn 5701 ↾ cres 5702 “ cima 5703 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: psdmul 22193 |
Copyright terms: Public domain | W3C validator |