![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimampo | Structured version Visualization version GIF version |
Description: Membership in the image of an operation. (Contributed by SN, 27-Apr-2025.) |
Ref | Expression |
---|---|
rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
elimampo.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
elimampo.x | ⊢ (𝜑 → 𝑋 ⊆ 𝐴) |
elimampo.y | ⊢ (𝜑 → 𝑌 ⊆ 𝐵) |
Ref | Expression |
---|---|
elimampo | ⊢ (𝜑 → (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝐷 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5691 | . . . 4 ⊢ (𝐹 “ (𝑋 × 𝑌)) = ran (𝐹 ↾ (𝑋 × 𝑌)) | |
2 | 1 | eleq2i 2817 | . . 3 ⊢ (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ 𝐷 ∈ ran (𝐹 ↾ (𝑋 × 𝑌))) |
3 | rngop.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
4 | 3 | reseq1i 5981 | . . . . . 6 ⊢ (𝐹 ↾ (𝑋 × 𝑌)) = ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ↾ (𝑋 × 𝑌)) |
5 | elimampo.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ 𝐴) | |
6 | elimampo.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝐵) | |
7 | resmpo 7540 | . . . . . . 7 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶)) | |
8 | 5, 6, 7 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶)) |
9 | 4, 8 | eqtrid 2777 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ (𝑋 × 𝑌)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶)) |
10 | 9 | rneqd 5940 | . . . 4 ⊢ (𝜑 → ran (𝐹 ↾ (𝑋 × 𝑌)) = ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶)) |
11 | 10 | eleq2d 2811 | . . 3 ⊢ (𝜑 → (𝐷 ∈ ran (𝐹 ↾ (𝑋 × 𝑌)) ↔ 𝐷 ∈ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶))) |
12 | 2, 11 | bitrid 282 | . 2 ⊢ (𝜑 → (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ 𝐷 ∈ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶))) |
13 | elimampo.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
14 | eqid 2725 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) | |
15 | 14 | elrnmpog 7556 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (𝐷 ∈ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝐷 = 𝐶)) |
16 | 13, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝐷 ∈ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝐷 = 𝐶)) |
17 | 12, 16 | bitrd 278 | 1 ⊢ (𝜑 → (𝐷 ∈ (𝐹 “ (𝑋 × 𝑌)) ↔ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝐷 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 ⊆ wss 3944 × cxp 5676 ran crn 5679 ↾ cres 5680 “ cima 5681 ∈ cmpo 7421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-rel 5685 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-oprab 7423 df-mpo 7424 |
This theorem is referenced by: psdmul 22113 |
Copyright terms: Public domain | W3C validator |