Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnlem2 Structured version   Visualization version   GIF version

Theorem elrgspnlem2 33201
Description: Lemma for elrgspn 33204. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
elrgspn.b 𝐵 = (Base‘𝑅)
elrgspn.m 𝑀 = (mulGrp‘𝑅)
elrgspn.x · = (.g𝑅)
elrgspn.n 𝑁 = (RingSpan‘𝑅)
elrgspn.f 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
elrgspn.r (𝜑𝑅 ∈ Ring)
elrgspn.a (𝜑𝐴𝐵)
elrgspnlem1.1 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
Assertion
Ref Expression
elrgspnlem2 (𝜑𝑆 ∈ (SubRing‘𝑅))
Distinct variable groups:   · ,𝑓,𝑔,𝑤   𝐴,𝑓,𝑔,𝑤   𝐵,𝑓,𝑔,𝑤   𝑓,𝐹,𝑔,𝑤   𝑓,𝑀,𝑔,𝑤   𝑅,𝑓,𝑔,𝑤   𝑆,𝑔,𝑤   𝜑,𝑓,𝑔,𝑤
Allowed substitution hints:   𝑆(𝑓)   𝑁(𝑤,𝑓,𝑔)

Proof of Theorem elrgspnlem2
Dummy variables 𝑎 𝑖 𝑗 𝑡 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspn.r . 2 (𝜑𝑅 ∈ Ring)
2 elrgspn.b . . 3 𝐵 = (Base‘𝑅)
3 elrgspn.m . . 3 𝑀 = (mulGrp‘𝑅)
4 elrgspn.x . . 3 · = (.g𝑅)
5 elrgspn.n . . 3 𝑁 = (RingSpan‘𝑅)
6 elrgspn.f . . 3 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
7 elrgspn.a . . 3 (𝜑𝐴𝐵)
8 elrgspnlem1.1 . . 3 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
92, 3, 4, 5, 6, 1, 7, 8elrgspnlem1 33200 . 2 (𝜑𝑆 ∈ (SubGrp‘𝑅))
10 eqeq2 2742 . . . . . . 7 ((1r𝑅) = if(𝑤 = ∅, (1r𝑅), (0g𝑅)) → ((((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (1r𝑅) ↔ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = if(𝑤 = ∅, (1r𝑅), (0g𝑅))))
11 eqeq2 2742 . . . . . . 7 ((0g𝑅) = if(𝑤 = ∅, (1r𝑅), (0g𝑅)) → ((((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅) ↔ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = if(𝑤 = ∅, (1r𝑅), (0g𝑅))))
12 simpr 484 . . . . . . . . . . 11 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → 𝑤 = ∅)
1312fveq2d 6865 . . . . . . . . . 10 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) = ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘∅))
14 eqid 2730 . . . . . . . . . . . 12 (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))
15 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑣 = ∅) → 𝑣 = ∅)
1615iftrued 4499 . . . . . . . . . . . 12 ((𝜑𝑣 = ∅) → if(𝑣 = ∅, 1, 0) = 1)
17 wrd0 14511 . . . . . . . . . . . . 13 ∅ ∈ Word 𝐴
1817a1i 11 . . . . . . . . . . . 12 (𝜑 → ∅ ∈ Word 𝐴)
19 1zzd 12571 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
2014, 16, 18, 19fvmptd2 6979 . . . . . . . . . . 11 (𝜑 → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘∅) = 1)
2120ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘∅) = 1)
2213, 21eqtrd 2765 . . . . . . . . 9 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) = 1)
2312oveq2d 7406 . . . . . . . . . 10 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → (𝑀 Σg 𝑤) = (𝑀 Σg ∅))
24 eqid 2730 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
253, 24ringidval 20099 . . . . . . . . . . 11 (1r𝑅) = (0g𝑀)
2625gsum0 18618 . . . . . . . . . 10 (𝑀 Σg ∅) = (1r𝑅)
2723, 26eqtrdi 2781 . . . . . . . . 9 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → (𝑀 Σg 𝑤) = (1r𝑅))
2822, 27oveq12d 7408 . . . . . . . 8 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (1 · (1r𝑅)))
292, 24ringidcl 20181 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
301, 29syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑅) ∈ 𝐵)
312, 4mulg1 19020 . . . . . . . . . 10 ((1r𝑅) ∈ 𝐵 → (1 · (1r𝑅)) = (1r𝑅))
3230, 31syl 17 . . . . . . . . 9 (𝜑 → (1 · (1r𝑅)) = (1r𝑅))
3332ad2antrr 726 . . . . . . . 8 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → (1 · (1r𝑅)) = (1r𝑅))
3428, 33eqtrd 2765 . . . . . . 7 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (1r𝑅))
35 eqeq1 2734 . . . . . . . . . . . . . 14 (𝑣 = 𝑤 → (𝑣 = ∅ ↔ 𝑤 = ∅))
3635notbid 318 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → (¬ 𝑣 = ∅ ↔ ¬ 𝑤 = ∅))
3736biimparc 479 . . . . . . . . . . . 12 ((¬ 𝑤 = ∅ ∧ 𝑣 = 𝑤) → ¬ 𝑣 = ∅)
3837adantll 714 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ∅) ∧ 𝑣 = 𝑤) → ¬ 𝑣 = ∅)
3938iffalsed 4502 . . . . . . . . . 10 ((((𝜑𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ∅) ∧ 𝑣 = 𝑤) → if(𝑣 = ∅, 1, 0) = 0)
40 simplr 768 . . . . . . . . . 10 (((𝜑𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ∅) → 𝑤 ∈ Word 𝐴)
41 0zd 12548 . . . . . . . . . 10 (((𝜑𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ∅) → 0 ∈ ℤ)
4214, 39, 40, 41fvmptd2 6979 . . . . . . . . 9 (((𝜑𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ∅) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) = 0)
4342oveq1d 7405 . . . . . . . 8 (((𝜑𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ∅) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
443ringmgp 20155 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
451, 44syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ Mnd)
46 sswrd 14494 . . . . . . . . . . . . 13 (𝐴𝐵 → Word 𝐴 ⊆ Word 𝐵)
477, 46syl 17 . . . . . . . . . . . 12 (𝜑 → Word 𝐴 ⊆ Word 𝐵)
4847sselda 3949 . . . . . . . . . . 11 ((𝜑𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
493, 2mgpbas 20061 . . . . . . . . . . . 12 𝐵 = (Base‘𝑀)
5049gsumwcl 18773 . . . . . . . . . . 11 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → (𝑀 Σg 𝑤) ∈ 𝐵)
5145, 48, 50syl2an2r 685 . . . . . . . . . 10 ((𝜑𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
52 eqid 2730 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
532, 52, 4mulg0 19013 . . . . . . . . . 10 ((𝑀 Σg 𝑤) ∈ 𝐵 → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
5451, 53syl 17 . . . . . . . . 9 ((𝜑𝑤 ∈ Word 𝐴) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
5554adantr 480 . . . . . . . 8 (((𝜑𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ∅) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
5643, 55eqtrd 2765 . . . . . . 7 (((𝜑𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ∅) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
5710, 11, 34, 56ifbothda 4530 . . . . . 6 ((𝜑𝑤 ∈ Word 𝐴) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = if(𝑤 = ∅, (1r𝑅), (0g𝑅)))
5857mpteq2dva 5203 . . . . 5 (𝜑 → (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ∅, (1r𝑅), (0g𝑅))))
5958oveq2d 7406 . . . 4 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ∅, (1r𝑅), (0g𝑅)))))
601ringcmnd 20200 . . . . . 6 (𝜑𝑅 ∈ CMnd)
6160cmnmndd 19741 . . . . 5 (𝜑𝑅 ∈ Mnd)
622fvexi 6875 . . . . . . . 8 𝐵 ∈ V
6362a1i 11 . . . . . . 7 (𝜑𝐵 ∈ V)
6463, 7ssexd 5282 . . . . . 6 (𝜑𝐴 ∈ V)
65 wrdexg 14496 . . . . . 6 (𝐴 ∈ V → Word 𝐴 ∈ V)
6664, 65syl 17 . . . . 5 (𝜑 → Word 𝐴 ∈ V)
67 eqid 2730 . . . . 5 (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ∅, (1r𝑅), (0g𝑅))) = (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ∅, (1r𝑅), (0g𝑅)))
6830, 2eleqtrdi 2839 . . . . 5 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
6952, 61, 66, 18, 67, 68gsummptif1n0 19903 . . . 4 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ∅, (1r𝑅), (0g𝑅)))) = (1r𝑅))
7059, 69eqtrd 2765 . . 3 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) = (1r𝑅))
71 eqid 2730 . . . . 5 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
72 fveq1 6860 . . . . . . . . . 10 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) → (𝑔𝑤) = ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤))
7372oveq1d 7405 . . . . . . . . 9 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))
7473mpteq2dv 5204 . . . . . . . 8 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤))))
7574oveq2d 7406 . . . . . . 7 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))))
7675eqeq2d 2741 . . . . . 6 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤))))))
77 breq1 5113 . . . . . . . 8 (𝑓 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) → (𝑓 finSupp 0 ↔ (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) finSupp 0))
78 zex 12545 . . . . . . . . . 10 ℤ ∈ V
7978a1i 11 . . . . . . . . 9 (𝜑 → ℤ ∈ V)
80 1zzd 12571 . . . . . . . . . . 11 (((𝜑𝑣 ∈ Word 𝐴) ∧ 𝑣 = ∅) → 1 ∈ ℤ)
81 0zd 12548 . . . . . . . . . . 11 (((𝜑𝑣 ∈ Word 𝐴) ∧ ¬ 𝑣 = ∅) → 0 ∈ ℤ)
8280, 81ifclda 4527 . . . . . . . . . 10 ((𝜑𝑣 ∈ Word 𝐴) → if(𝑣 = ∅, 1, 0) ∈ ℤ)
8382fmpttd 7090 . . . . . . . . 9 (𝜑 → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)):Word 𝐴⟶ℤ)
8479, 66, 83elmapdd 8817 . . . . . . . 8 (𝜑 → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) ∈ (ℤ ↑m Word 𝐴))
8566mptexd 7201 . . . . . . . . 9 (𝜑 → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) ∈ V)
8683ffund 6695 . . . . . . . . 9 (𝜑 → Fun (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)))
87 0zd 12548 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
88 snfi 9017 . . . . . . . . . 10 {∅} ∈ Fin
8988a1i 11 . . . . . . . . 9 (𝜑 → {∅} ∈ Fin)
90 eldifsni 4757 . . . . . . . . . . . . 13 (𝑣 ∈ (Word 𝐴 ∖ {∅}) → 𝑣 ≠ ∅)
9190adantl 481 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (Word 𝐴 ∖ {∅})) → 𝑣 ≠ ∅)
9291neneqd 2931 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (Word 𝐴 ∖ {∅})) → ¬ 𝑣 = ∅)
9392iffalsed 4502 . . . . . . . . . 10 ((𝜑𝑣 ∈ (Word 𝐴 ∖ {∅})) → if(𝑣 = ∅, 1, 0) = 0)
9493, 66suppss2 8182 . . . . . . . . 9 (𝜑 → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) supp 0) ⊆ {∅})
95 suppssfifsupp 9338 . . . . . . . . 9 ((((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) ∈ V ∧ Fun (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) ∧ 0 ∈ ℤ) ∧ ({∅} ∈ Fin ∧ ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) supp 0) ⊆ {∅})) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) finSupp 0)
9685, 86, 87, 89, 94, 95syl32anc 1380 . . . . . . . 8 (𝜑 → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) finSupp 0)
9777, 84, 96elrabd 3664 . . . . . . 7 (𝜑 → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
9897, 6eleqtrrdi 2840 . . . . . 6 (𝜑 → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) ∈ 𝐹)
99 eqidd 2731 . . . . . 6 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))))
10076, 98, 99rspcedvdw 3594 . . . . 5 (𝜑 → ∃𝑔𝐹 (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
101 ovexd 7425 . . . . 5 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) ∈ V)
10271, 100, 101elrnmptd 5930 . . . 4 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
103102, 8eleqtrrdi 2840 . . 3 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑆)
10470, 103eqeltrrd 2830 . 2 (𝜑 → (1r𝑅) ∈ 𝑆)
105 simpllr 775 . . . . . . . 8 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
106 simpr 484 . . . . . . . 8 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
107105, 106oveq12d 7408 . . . . . . 7 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(.r𝑅)𝑦) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))))
108 eqid 2730 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
10966ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → Word 𝐴 ∈ V)
1101ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑅 ∈ Ring)
1111ringgrpd 20158 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Grp)
112111ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
1136ssrab3 4048 . . . . . . . . . . . . . . . . . . . . . . 23 𝐹 ⊆ (ℤ ↑m Word 𝐴)
114113a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹 ⊆ (ℤ ↑m Word 𝐴))
115114sselda 3949 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑔𝐹) → 𝑔 ∈ (ℤ ↑m Word 𝐴))
11679, 66elmapd 8816 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑔 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑔:Word 𝐴⟶ℤ))
117116adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑔𝐹) → (𝑔 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑔:Word 𝐴⟶ℤ))
118115, 117mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑔𝐹) → 𝑔:Word 𝐴⟶ℤ)
119118ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) ∈ ℤ)
12051adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
1212, 4, 112, 119, 120mulgcld 19035 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
122121adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
123122ralrimiva 3126 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∀𝑤 ∈ Word 𝐴((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
124 fveq2 6861 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑤 → (𝑔𝑢) = (𝑔𝑤))
125 oveq2 7398 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑤 → (𝑀 Σg 𝑢) = (𝑀 Σg 𝑤))
126124, 125oveq12d 7408 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑤 → ((𝑔𝑢) · (𝑀 Σg 𝑢)) = ((𝑔𝑤) · (𝑀 Σg 𝑤)))
127126eleq1d 2814 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑤 → (((𝑔𝑢) · (𝑀 Σg 𝑢)) ∈ 𝐵 ↔ ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵))
128127cbvralvw 3216 . . . . . . . . . . . . . . . 16 (∀𝑢 ∈ Word 𝐴((𝑔𝑢) · (𝑀 Σg 𝑢)) ∈ 𝐵 ↔ ∀𝑤 ∈ Word 𝐴((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
129123, 128sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∀𝑢 ∈ Word 𝐴((𝑔𝑢) · (𝑀 Σg 𝑢)) ∈ 𝐵)
130129r19.21bi 3230 . . . . . . . . . . . . . 14 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑢 ∈ Word 𝐴) → ((𝑔𝑢) · (𝑀 Σg 𝑢)) ∈ 𝐵)
131111ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
132 breq1 5113 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑖 → (𝑓 finSupp 0 ↔ 𝑖 finSupp 0))
133132, 6elrab2 3665 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖𝐹 ↔ (𝑖 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑖 finSupp 0))
134133simplbi 497 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖𝐹𝑖 ∈ (ℤ ↑m Word 𝐴))
135134adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝐹) → 𝑖 ∈ (ℤ ↑m Word 𝐴))
13679, 66elmapd 8816 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑖 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑖:Word 𝐴⟶ℤ))
137136adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝐹) → (𝑖 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑖:Word 𝐴⟶ℤ))
138135, 137mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐹) → 𝑖:Word 𝐴⟶ℤ)
139138ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑖𝑤) ∈ ℤ)
14051adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
1412, 4, 131, 139, 140mulgcld 19035 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑖𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
142141adantllr 719 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑖𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
143142ralrimiva 3126 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∀𝑤 ∈ Word 𝐴((𝑖𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
144 fveq2 6861 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → (𝑖𝑣) = (𝑖𝑤))
145 oveq2 7398 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → (𝑀 Σg 𝑣) = (𝑀 Σg 𝑤))
146144, 145oveq12d 7408 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑤 → ((𝑖𝑣) · (𝑀 Σg 𝑣)) = ((𝑖𝑤) · (𝑀 Σg 𝑤)))
147146eleq1d 2814 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑤 → (((𝑖𝑣) · (𝑀 Σg 𝑣)) ∈ 𝐵 ↔ ((𝑖𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵))
148147cbvralvw 3216 . . . . . . . . . . . . . . . 16 (∀𝑣 ∈ Word 𝐴((𝑖𝑣) · (𝑀 Σg 𝑣)) ∈ 𝐵 ↔ ∀𝑤 ∈ Word 𝐴((𝑖𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
149143, 148sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∀𝑣 ∈ Word 𝐴((𝑖𝑣) · (𝑀 Σg 𝑣)) ∈ 𝐵)
150149r19.21bi 3230 . . . . . . . . . . . . . 14 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → ((𝑖𝑣) · (𝑀 Σg 𝑣)) ∈ 𝐵)
151126cbvmptv 5214 . . . . . . . . . . . . . . 15 (𝑢 ∈ Word 𝐴 ↦ ((𝑔𝑢) · (𝑀 Σg 𝑢))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))
152 fvexd 6876 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔𝐹) → (0g𝑅) ∈ V)
153 0zd 12548 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔𝐹) → 0 ∈ ℤ)
15466adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔𝐹) → Word 𝐴 ∈ V)
155 ssidd 3973 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔𝐹) → Word 𝐴 ⊆ Word 𝐴)
156 breq1 5113 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → (𝑓 finSupp 0 ↔ 𝑔 finSupp 0))
157156, 6elrab2 3665 . . . . . . . . . . . . . . . . . . 19 (𝑔𝐹 ↔ (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑔 finSupp 0))
158157simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑔𝐹𝑔 finSupp 0)
159158adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔𝐹) → 𝑔 finSupp 0)
1602, 52, 4mulg0 19013 . . . . . . . . . . . . . . . . . 18 (𝑦𝐵 → (0 · 𝑦) = (0g𝑅))
161160adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑦𝐵) → (0 · 𝑦) = (0g𝑅))
162152, 153, 154, 155, 120, 118, 159, 161fisuppov1 32613 . . . . . . . . . . . . . . . 16 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
163162adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
164151, 163eqbrtrid 5145 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑢 ∈ Word 𝐴 ↦ ((𝑔𝑢) · (𝑀 Σg 𝑢))) finSupp (0g𝑅))
165146cbvmptv 5214 . . . . . . . . . . . . . . 15 (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))
166162ralrimiva 3126 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑔𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
167 fveq1 6860 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = 𝑖 → (𝑔𝑤) = (𝑖𝑤))
168167oveq1d 7405 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑖 → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = ((𝑖𝑤) · (𝑀 Σg 𝑤)))
169168mpteq2dv 5204 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑖 → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))
170169breq1d 5120 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑖 → ((𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅) ↔ (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅)))
171170cbvralvw 3216 . . . . . . . . . . . . . . . . . 18 (∀𝑔𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅) ↔ ∀𝑖𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
172166, 171sylib 218 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑖𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
173172r19.21bi 3230 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
174173adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
175165, 174eqbrtrid 5145 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣))) finSupp (0g𝑅))
1762, 108, 52, 109, 109, 110, 130, 150, 164, 175gsumdixp 20235 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑢 ∈ Word 𝐴 ↦ ((𝑔𝑢) · (𝑀 Σg 𝑢))))(.r𝑅)(𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣))))) = (𝑅 Σg (𝑢 ∈ Word 𝐴, 𝑣 ∈ Word 𝐴 ↦ (((𝑔𝑢) · (𝑀 Σg 𝑢))(.r𝑅)((𝑖𝑣) · (𝑀 Σg 𝑣))))))
177151oveq2i 7401 . . . . . . . . . . . . . . 15 (𝑅 Σg (𝑢 ∈ Word 𝐴 ↦ ((𝑔𝑢) · (𝑀 Σg 𝑢)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))
178165oveq2i 7401 . . . . . . . . . . . . . . 15 (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))
179177, 178oveq12i 7402 . . . . . . . . . . . . . 14 ((𝑅 Σg (𝑢 ∈ Word 𝐴 ↦ ((𝑔𝑢) · (𝑀 Σg 𝑢))))(.r𝑅)(𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣))))) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
180179a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑢 ∈ Word 𝐴 ↦ ((𝑔𝑢) · (𝑀 Σg 𝑢))))(.r𝑅)(𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣))))) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))))
181110ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → 𝑅 ∈ Ring)
182122adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
183111ad4antr 732 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → 𝑅 ∈ Grp)
184138adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖:Word 𝐴⟶ℤ)
185184ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑓 ∈ Word 𝐴) → (𝑖𝑓) ∈ ℤ)
186185adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (𝑖𝑓) ∈ ℤ)
18745ad4antr 732 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → 𝑀 ∈ Mnd)
18847adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑔𝐹) → Word 𝐴 ⊆ Word 𝐵)
189188ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → Word 𝐴 ⊆ Word 𝐵)
190189sselda 3949 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → 𝑓 ∈ Word 𝐵)
19149gsumwcl 18773 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵) → (𝑀 Σg 𝑓) ∈ 𝐵)
192187, 190, 191syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (𝑀 Σg 𝑓) ∈ 𝐵)
1932, 4, 183, 186, 192mulgcld 19035 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → ((𝑖𝑓) · (𝑀 Σg 𝑓)) ∈ 𝐵)
1942, 108, 181, 182, 193ringcld 20176 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) ∈ 𝐵)
195194anasss 466 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ (𝑤 ∈ Word 𝐴𝑓 ∈ Word 𝐴)) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) ∈ 𝐵)
196195ralrimivva 3181 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∀𝑤 ∈ Word 𝐴𝑓 ∈ Word 𝐴(((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) ∈ 𝐵)
197 eqid 2730 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))) = (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))
198197fmpo 8050 . . . . . . . . . . . . . . . 16 (∀𝑤 ∈ Word 𝐴𝑓 ∈ Word 𝐴(((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) ∈ 𝐵 ↔ (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))):(Word 𝐴 × Word 𝐴)⟶𝐵)
199196, 198sylib 218 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))):(Word 𝐴 × Word 𝐴)⟶𝐵)
200 vex 3454 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
201 vex 3454 . . . . . . . . . . . . . . . . . . . . 21 𝑓 ∈ V
202200, 201op1std 7981 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = ⟨𝑤, 𝑓⟩ → (1st𝑎) = 𝑤)
203202fveq2d 6865 . . . . . . . . . . . . . . . . . . 19 (𝑎 = ⟨𝑤, 𝑓⟩ → (𝑔‘(1st𝑎)) = (𝑔𝑤))
204202oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (𝑎 = ⟨𝑤, 𝑓⟩ → (𝑀 Σg (1st𝑎)) = (𝑀 Σg 𝑤))
205203, 204oveq12d 7408 . . . . . . . . . . . . . . . . . 18 (𝑎 = ⟨𝑤, 𝑓⟩ → ((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎))) = ((𝑔𝑤) · (𝑀 Σg 𝑤)))
206200, 201op2ndd 7982 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = ⟨𝑤, 𝑓⟩ → (2nd𝑎) = 𝑓)
207206fveq2d 6865 . . . . . . . . . . . . . . . . . . 19 (𝑎 = ⟨𝑤, 𝑓⟩ → (𝑖‘(2nd𝑎)) = (𝑖𝑓))
208206oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (𝑎 = ⟨𝑤, 𝑓⟩ → (𝑀 Σg (2nd𝑎)) = (𝑀 Σg 𝑓))
209207, 208oveq12d 7408 . . . . . . . . . . . . . . . . . 18 (𝑎 = ⟨𝑤, 𝑓⟩ → ((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))) = ((𝑖𝑓) · (𝑀 Σg 𝑓)))
210205, 209oveq12d 7408 . . . . . . . . . . . . . . . . 17 (𝑎 = ⟨𝑤, 𝑓⟩ → (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))
211210mpompt 7506 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))))) = (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))
21266, 66xpexd 7730 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Word 𝐴 × Word 𝐴) ∈ V)
213212ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (Word 𝐴 × Word 𝐴) ∈ V)
214213mptexd 7201 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))))) ∈ V)
215 fvexd 6876 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (0g𝑅) ∈ V)
216110adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 𝑅 ∈ Ring)
217111ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 𝑅 ∈ Grp)
218118ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 𝑔:Word 𝐴⟶ℤ)
219 xp1st 8003 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ (Word 𝐴 × Word 𝐴) → (1st𝑎) ∈ Word 𝐴)
220219adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (1st𝑎) ∈ Word 𝐴)
221218, 220ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (𝑔‘(1st𝑎)) ∈ ℤ)
222216, 44syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 𝑀 ∈ Mnd)
223188ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → Word 𝐴 ⊆ Word 𝐵)
224223, 220sseldd 3950 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (1st𝑎) ∈ Word 𝐵)
22549gsumwcl 18773 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ Mnd ∧ (1st𝑎) ∈ Word 𝐵) → (𝑀 Σg (1st𝑎)) ∈ 𝐵)
226222, 224, 225syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (𝑀 Σg (1st𝑎)) ∈ 𝐵)
2272, 4, 217, 221, 226mulgcld 19035 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → ((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎))) ∈ 𝐵)
228184adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 𝑖:Word 𝐴⟶ℤ)
229 xp2nd 8004 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ (Word 𝐴 × Word 𝐴) → (2nd𝑎) ∈ Word 𝐴)
230229adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (2nd𝑎) ∈ Word 𝐴)
231228, 230ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (𝑖‘(2nd𝑎)) ∈ ℤ)
232223, 230sseldd 3950 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (2nd𝑎) ∈ Word 𝐵)
23349gsumwcl 18773 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ Mnd ∧ (2nd𝑎) ∈ Word 𝐵) → (𝑀 Σg (2nd𝑎)) ∈ 𝐵)
234222, 232, 233syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (𝑀 Σg (2nd𝑎)) ∈ 𝐵)
2352, 4, 217, 231, 234mulgcld 19035 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → ((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))) ∈ 𝐵)
2362, 108, 216, 227, 235ringcld 20176 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))) ∈ 𝐵)
237236fmpttd 7090 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))))):(Word 𝐴 × Word 𝐴)⟶𝐵)
238237ffund 6695 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → Fun (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))))))
239159fsuppimpd 9327 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔𝐹) → (𝑔 supp 0) ∈ Fin)
240133simprbi 496 . . . . . . . . . . . . . . . . . . . . 21 (𝑖𝐹𝑖 finSupp 0)
241240adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖 finSupp 0)
242241fsuppimpd 9327 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑖 supp 0) ∈ Fin)
243 xpfi 9276 . . . . . . . . . . . . . . . . . . 19 (((𝑔 supp 0) ∈ Fin ∧ (𝑖 supp 0) ∈ Fin) → ((𝑔 supp 0) × (𝑖 supp 0)) ∈ Fin)
244239, 242, 243syl2an2r 685 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑔 supp 0) × (𝑖 supp 0)) ∈ Fin)
245118ffnd 6692 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑔𝐹) → 𝑔 Fn Word 𝐴)
246245adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔 Fn Word 𝐴)
247246ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → 𝑔 Fn Word 𝐴)
248109ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → Word 𝐴 ∈ V)
249 0zd 12548 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → 0 ∈ ℤ)
250 xp1st 8003 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴) → (1st𝑎) ∈ (Word 𝐴 ∖ (𝑔 supp 0)))
251250adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (1st𝑎) ∈ (Word 𝐴 ∖ (𝑔 supp 0)))
252247, 248, 249, 251fvdifsupp 8153 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (𝑔‘(1st𝑎)) = 0)
253252oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → ((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎))) = (0 · (𝑀 Σg (1st𝑎))))
25445ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → 𝑀 ∈ Mnd)
255188ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → Word 𝐴 ⊆ Word 𝐵)
256251eldifad 3929 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (1st𝑎) ∈ Word 𝐴)
257255, 256sseldd 3950 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (1st𝑎) ∈ Word 𝐵)
258254, 257, 225syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (𝑀 Σg (1st𝑎)) ∈ 𝐵)
2592, 52, 4mulg0 19013 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 Σg (1st𝑎)) ∈ 𝐵 → (0 · (𝑀 Σg (1st𝑎))) = (0g𝑅))
260258, 259syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (0 · (𝑀 Σg (1st𝑎))) = (0g𝑅))
261253, 260eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → ((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎))) = (0g𝑅))
262261oveq1d 7405 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))) = ((0g𝑅)(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))))
263110ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → 𝑅 ∈ Ring)
264111ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → 𝑅 ∈ Grp)
265184ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → 𝑖:Word 𝐴⟶ℤ)
266 xp2nd 8004 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴) → (2nd𝑎) ∈ Word 𝐴)
267266adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (2nd𝑎) ∈ Word 𝐴)
268265, 267ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (𝑖‘(2nd𝑎)) ∈ ℤ)
269255, 267sseldd 3950 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (2nd𝑎) ∈ Word 𝐵)
270254, 269, 233syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (𝑀 Σg (2nd𝑎)) ∈ 𝐵)
2712, 4, 264, 268, 270mulgcld 19035 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → ((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))) ∈ 𝐵)
2722, 108, 52, 263, 271ringlzd 20211 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → ((0g𝑅)(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))) = (0g𝑅))
273262, 272eqtrd 2765 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))) = (0g𝑅))
274138ffnd 6692 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑖𝐹) → 𝑖 Fn Word 𝐴)
275274adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖 Fn Word 𝐴)
276275ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → 𝑖 Fn Word 𝐴)
277109ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → Word 𝐴 ∈ V)
278 0zd 12548 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → 0 ∈ ℤ)
279 xp2nd 8004 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0))) → (2nd𝑎) ∈ (Word 𝐴 ∖ (𝑖 supp 0)))
280279adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (2nd𝑎) ∈ (Word 𝐴 ∖ (𝑖 supp 0)))
281276, 277, 278, 280fvdifsupp 8153 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (𝑖‘(2nd𝑎)) = 0)
282281oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → ((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))) = (0 · (𝑀 Σg (2nd𝑎))))
28345ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → 𝑀 ∈ Mnd)
284188ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → Word 𝐴 ⊆ Word 𝐵)
285280eldifad 3929 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (2nd𝑎) ∈ Word 𝐴)
286284, 285sseldd 3950 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (2nd𝑎) ∈ Word 𝐵)
287283, 286, 233syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (𝑀 Σg (2nd𝑎)) ∈ 𝐵)
2882, 52, 4mulg0 19013 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 Σg (2nd𝑎)) ∈ 𝐵 → (0 · (𝑀 Σg (2nd𝑎))) = (0g𝑅))
289287, 288syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (0 · (𝑀 Σg (2nd𝑎))) = (0g𝑅))
290282, 289eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → ((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))) = (0g𝑅))
291290oveq2d 7406 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))) = (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)(0g𝑅)))
292110ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → 𝑅 ∈ Ring)
293111ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → 𝑅 ∈ Grp)
294118adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔:Word 𝐴⟶ℤ)
295294ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → 𝑔:Word 𝐴⟶ℤ)
296 xp1st 8003 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0))) → (1st𝑎) ∈ Word 𝐴)
297296adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (1st𝑎) ∈ Word 𝐴)
298295, 297ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (𝑔‘(1st𝑎)) ∈ ℤ)
299284, 297sseldd 3950 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (1st𝑎) ∈ Word 𝐵)
300283, 299, 225syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (𝑀 Σg (1st𝑎)) ∈ 𝐵)
3012, 4, 293, 298, 300mulgcld 19035 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → ((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎))) ∈ 𝐵)
3022, 108, 52, 292, 301ringrzd 20212 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)(0g𝑅)) = (0g𝑅))
303291, 302eqtrd 2765 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))) = (0g𝑅))
304 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) → 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0))))
305 difxp 6140 . . . . . . . . . . . . . . . . . . . . . 22 ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0))) = (((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴) ∪ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0))))
306304, 305eleqtrdi 2839 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) → 𝑎 ∈ (((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴) ∪ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))))
307 elun 4119 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ (((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴) ∪ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) ↔ (𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴) ∨ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))))
308306, 307sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) → (𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴) ∨ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))))
309273, 303, 308mpjaodan 960 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) → (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))) = (0g𝑅))
310309, 213suppss2 8182 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))))) supp (0g𝑅)) ⊆ ((𝑔 supp 0) × (𝑖 supp 0)))
311244, 310ssfid 9219 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))))) supp (0g𝑅)) ∈ Fin)
312214, 215, 238, 311isfsuppd 9324 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))))) finSupp (0g𝑅))
313211, 312eqbrtrrid 5146 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))) finSupp (0g𝑅))
31460ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑅 ∈ CMnd)
3157ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝐴𝐵)
3162, 52, 199, 313, 314, 315gsumwrd2dccat 33014 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))) = (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ ((𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))‘⟨(𝑣 prefix 𝑗), (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)⟩))))))
317126oveq1d 7405 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑤 → (((𝑔𝑢) · (𝑀 Σg 𝑢))(.r𝑅)((𝑖𝑣) · (𝑀 Σg 𝑣))) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑣) · (𝑀 Σg 𝑣))))
318 fveq2 6861 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑓 → (𝑖𝑣) = (𝑖𝑓))
319 oveq2 7398 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑓 → (𝑀 Σg 𝑣) = (𝑀 Σg 𝑓))
320318, 319oveq12d 7408 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑓 → ((𝑖𝑣) · (𝑀 Σg 𝑣)) = ((𝑖𝑓) · (𝑀 Σg 𝑓)))
321320oveq2d 7406 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑓 → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑣) · (𝑀 Σg 𝑣))) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))
322317, 321cbvmpov 7487 . . . . . . . . . . . . . . . 16 (𝑢 ∈ Word 𝐴, 𝑣 ∈ Word 𝐴 ↦ (((𝑔𝑢) · (𝑀 Σg 𝑢))(.r𝑅)((𝑖𝑣) · (𝑀 Σg 𝑣)))) = (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))
323322oveq2i 7401 . . . . . . . . . . . . . . 15 (𝑅 Σg (𝑢 ∈ Word 𝐴, 𝑣 ∈ Word 𝐴 ↦ (((𝑔𝑢) · (𝑀 Σg 𝑢))(.r𝑅)((𝑖𝑣) · (𝑀 Σg 𝑣))))) = (𝑅 Σg (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))))
324323a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑢 ∈ Word 𝐴, 𝑣 ∈ Word 𝐴 ↦ (((𝑔𝑢) · (𝑀 Σg 𝑢))(.r𝑅)((𝑖𝑣) · (𝑀 Σg 𝑣))))) = (𝑅 Σg (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))))
325 pfxcctswrd 14682 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣 ∈ Word 𝐴𝑗 ∈ (0...(♯‘𝑣))) → ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) = 𝑣)
326325adantll 714 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) = 𝑣)
327326oveq2d 7406 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) = (𝑀 Σg 𝑣))
328327oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))) = (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg 𝑣)))
329328mpteq2dva 5203 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (𝑗 ∈ (0...(♯‘𝑣)) ↦ (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))))) = (𝑗 ∈ (0...(♯‘𝑣)) ↦ (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg 𝑣))))
330329oveq2d 7406 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))))) = (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg 𝑣)))))
331 df-ov 7393 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 prefix 𝑗)(𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) = ((𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))‘⟨(𝑣 prefix 𝑗), (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)⟩)
332188sselda 3949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
333332ad4ant13 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
334187, 333, 50syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
3352, 4, 108mulgass3 20269 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ Ring ∧ ((𝑖𝑓) ∈ ℤ ∧ (𝑀 Σg 𝑤) ∈ 𝐵 ∧ (𝑀 Σg 𝑓) ∈ 𝐵)) → ((𝑀 Σg 𝑤)(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = ((𝑖𝑓) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓))))
336181, 186, 334, 192, 335syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → ((𝑀 Σg 𝑤)(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = ((𝑖𝑓) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓))))
337336oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → ((𝑔𝑤) · ((𝑀 Σg 𝑤)(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))) = ((𝑔𝑤) · ((𝑖𝑓) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓)))))
338119ad4ant13 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (𝑔𝑤) ∈ ℤ)
3392, 4, 108mulgass2 20225 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ Ring ∧ ((𝑔𝑤) ∈ ℤ ∧ (𝑀 Σg 𝑤) ∈ 𝐵 ∧ ((𝑖𝑓) · (𝑀 Σg 𝑓)) ∈ 𝐵)) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = ((𝑔𝑤) · ((𝑀 Σg 𝑤)(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))))
340181, 338, 334, 193, 339syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = ((𝑔𝑤) · ((𝑀 Σg 𝑤)(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))))
3412, 108, 181, 334, 192ringcld 20176 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓)) ∈ 𝐵)
3422, 4mulgass 19050 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ Grp ∧ ((𝑔𝑤) ∈ ℤ ∧ (𝑖𝑓) ∈ ℤ ∧ ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓)) ∈ 𝐵)) → (((𝑔𝑤) · (𝑖𝑓)) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓))) = ((𝑔𝑤) · ((𝑖𝑓) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓)))))
343183, 338, 186, 341, 342syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑖𝑓)) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓))) = ((𝑔𝑤) · ((𝑖𝑓) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓)))))
344337, 340, 3433eqtr4d 2775 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = (((𝑔𝑤) · (𝑖𝑓)) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓))))
3453, 108mgpplusg 20060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (.r𝑅) = (+g𝑀)
34649, 345gsumccat 18775 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵𝑓 ∈ Word 𝐵) → (𝑀 Σg (𝑤 ++ 𝑓)) = ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓)))
347187, 333, 190, 346syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (𝑀 Σg (𝑤 ++ 𝑓)) = ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓)))
348347oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑖𝑓)) · (𝑀 Σg (𝑤 ++ 𝑓))) = (((𝑔𝑤) · (𝑖𝑓)) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓))))
349344, 348eqtr4d 2768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = (((𝑔𝑤) · (𝑖𝑓)) · (𝑀 Σg (𝑤 ++ 𝑓))))
350349adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = (((𝑔𝑤) · (𝑖𝑓)) · (𝑀 Σg (𝑤 ++ 𝑓))))
351350adantllr 719 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = (((𝑔𝑤) · (𝑖𝑓)) · (𝑀 Σg (𝑤 ++ 𝑓))))
3523513impa 1109 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) ∧ 𝑤 ∈ Word 𝐴𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = (((𝑔𝑤) · (𝑖𝑓)) · (𝑀 Σg (𝑤 ++ 𝑓))))
353352mpoeq3dva 7469 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))) = (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑖𝑓)) · (𝑀 Σg (𝑤 ++ 𝑓)))))
354 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = (𝑣 prefix 𝑗) → (𝑔𝑤) = (𝑔‘(𝑣 prefix 𝑗)))
355 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩) → (𝑖𝑓) = (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))
356354, 355oveqan12d 7409 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 = (𝑣 prefix 𝑗) ∧ 𝑓 = (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) → ((𝑔𝑤) · (𝑖𝑓)) = ((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))))
357 oveq12 7399 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑤 = (𝑣 prefix 𝑗) ∧ 𝑓 = (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) → (𝑤 ++ 𝑓) = ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))
358357oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 = (𝑣 prefix 𝑗) ∧ 𝑓 = (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) → (𝑀 Σg (𝑤 ++ 𝑓)) = (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))))
359356, 358oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤 = (𝑣 prefix 𝑗) ∧ 𝑓 = (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) → (((𝑔𝑤) · (𝑖𝑓)) · (𝑀 Σg (𝑤 ++ 𝑓))) = (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))))
360359adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) ∧ (𝑤 = (𝑣 prefix 𝑗) ∧ 𝑓 = (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) → (((𝑔𝑤) · (𝑖𝑓)) · (𝑀 Σg (𝑤 ++ 𝑓))) = (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))))
361 pfxcl 14649 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ Word 𝐴 → (𝑣 prefix 𝑗) ∈ Word 𝐴)
362361ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → (𝑣 prefix 𝑗) ∈ Word 𝐴)
363 swrdcl 14617 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ Word 𝐴 → (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩) ∈ Word 𝐴)
364363ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩) ∈ Word 𝐴)
365 ovexd 7425 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))) ∈ V)
366353, 360, 362, 364, 365ovmpod 7544 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → ((𝑣 prefix 𝑗)(𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) = (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))))
367331, 366eqtr3id 2779 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → ((𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))‘⟨(𝑣 prefix 𝑗), (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)⟩) = (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))))
368367mpteq2dva 5203 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (𝑗 ∈ (0...(♯‘𝑣)) ↦ ((𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))‘⟨(𝑣 prefix 𝑗), (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)⟩)) = (𝑗 ∈ (0...(♯‘𝑣)) ↦ (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))))))
369368oveq2d 7406 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ ((𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))‘⟨(𝑣 prefix 𝑗), (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)⟩))) = (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))))))
370 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) = (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))
371 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑣 → (♯‘𝑡) = (♯‘𝑣))
372371oveq2d 7406 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑣 → (0...(♯‘𝑡)) = (0...(♯‘𝑣)))
373 fvoveq1 7413 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑣 → (𝑔‘(𝑡 prefix 𝑗)) = (𝑔‘(𝑣 prefix 𝑗)))
374 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑣𝑡 = 𝑣)
375371opeq2d 4847 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑣 → ⟨𝑗, (♯‘𝑡)⟩ = ⟨𝑗, (♯‘𝑣)⟩)
376374, 375oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑣 → (𝑡 substr ⟨𝑗, (♯‘𝑡)⟩) = (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))
377376fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑣 → (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)) = (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))
378373, 377oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑣 → ((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) = ((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))))
379378adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 = 𝑣𝑗 ∈ (0...(♯‘𝑡))) → ((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) = ((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))))
380372, 379sumeq12dv 15679 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑣 → Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) = Σ𝑗 ∈ (0...(♯‘𝑣))((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))))
381 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → 𝑣 ∈ Word 𝐴)
382 fzfid 13945 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (0...(♯‘𝑣)) ∈ Fin)
383294ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → 𝑔:Word 𝐴⟶ℤ)
384383, 362ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → (𝑔‘(𝑣 prefix 𝑗)) ∈ ℤ)
385184ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → 𝑖:Word 𝐴⟶ℤ)
386385, 364ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) ∈ ℤ)
387384, 386zmulcld 12651 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → ((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) ∈ ℤ)
388387zcnd 12646 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → ((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) ∈ ℂ)
389382, 388fsumcl 15706 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → Σ𝑗 ∈ (0...(♯‘𝑣))((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) ∈ ℂ)
390370, 380, 381, 389fvmptd3 6994 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → ((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) = Σ𝑗 ∈ (0...(♯‘𝑣))((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))))
391390oveq1d 7405 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)) = (Σ𝑗 ∈ (0...(♯‘𝑣))((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg 𝑣)))
392111ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → 𝑅 ∈ Grp)
39345ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → 𝑀 ∈ Mnd)
394315, 46syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → Word 𝐴 ⊆ Word 𝐵)
395394sselda 3949 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → 𝑣 ∈ Word 𝐵)
39649gsumwcl 18773 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ Word 𝐵) → (𝑀 Σg 𝑣) ∈ 𝐵)
397393, 395, 396syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (𝑀 Σg 𝑣) ∈ 𝐵)
3982, 4, 392, 382, 397, 387gsummulgc2 33007 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg 𝑣)))) = (Σ𝑗 ∈ (0...(♯‘𝑣))((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg 𝑣)))
399391, 398eqtr4d 2768 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)) = (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg 𝑣)))))
400330, 369, 3993eqtr4rd 2776 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)) = (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ ((𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))‘⟨(𝑣 prefix 𝑗), (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)⟩))))
401400mpteq2dva 5203 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣))) = (𝑣 ∈ Word 𝐴 ↦ (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ ((𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))‘⟨(𝑣 prefix 𝑗), (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)⟩)))))
402401oveq2d 7406 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) = (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ ((𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))‘⟨(𝑣 prefix 𝑗), (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)⟩))))))
403316, 324, 4023eqtr4d 2775 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑢 ∈ Word 𝐴, 𝑣 ∈ Word 𝐴 ↦ (((𝑔𝑢) · (𝑀 Σg 𝑢))(.r𝑅)((𝑖𝑣) · (𝑀 Σg 𝑣))))) = (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))))
404176, 180, 4033eqtr3d 2773 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) = (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))))
405 fveq1 6860 . . . . . . . . . . . . . . . . . 18 (𝑔 = → (𝑔𝑤) = (𝑤))
406405oveq1d 7405 . . . . . . . . . . . . . . . . 17 (𝑔 = → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = ((𝑤) · (𝑀 Σg 𝑤)))
407406mpteq2dv 5204 . . . . . . . . . . . . . . . 16 (𝑔 = → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))
408407oveq2d 7406 . . . . . . . . . . . . . . 15 (𝑔 = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
409408cbvmptv 5214 . . . . . . . . . . . . . 14 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
410 fveq1 6860 . . . . . . . . . . . . . . . . . . 19 ( = (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) → (𝑤) = ((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤))
411410oveq1d 7405 . . . . . . . . . . . . . . . . . 18 ( = (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) → ((𝑤) · (𝑀 Σg 𝑤)) = (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) · (𝑀 Σg 𝑤)))
412411mpteq2dv 5204 . . . . . . . . . . . . . . . . 17 ( = (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) · (𝑀 Σg 𝑤))))
413412oveq2d 7406 . . . . . . . . . . . . . . . 16 ( = (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) · (𝑀 Σg 𝑤)))))
414413eqeq2d 2741 . . . . . . . . . . . . . . 15 ( = (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) → ((𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) ↔ (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) · (𝑀 Σg 𝑤))))))
415 breq1 5113 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) → (𝑓 finSupp 0 ↔ (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) finSupp 0))
41678a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ℤ ∈ V)
417 fzfid 13945 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) → (0...(♯‘𝑡)) ∈ Fin)
418294ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑡))) → 𝑔:Word 𝐴⟶ℤ)
419 pfxcl 14649 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ Word 𝐴 → (𝑡 prefix 𝑗) ∈ Word 𝐴)
420419ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑡))) → (𝑡 prefix 𝑗) ∈ Word 𝐴)
421418, 420ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑡))) → (𝑔‘(𝑡 prefix 𝑗)) ∈ ℤ)
422184ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑡))) → 𝑖:Word 𝐴⟶ℤ)
423 swrdcl 14617 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ Word 𝐴 → (𝑡 substr ⟨𝑗, (♯‘𝑡)⟩) ∈ Word 𝐴)
424423ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑡))) → (𝑡 substr ⟨𝑗, (♯‘𝑡)⟩) ∈ Word 𝐴)
425422, 424ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑡))) → (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)) ∈ ℤ)
426421, 425zmulcld 12651 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑡))) → ((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) ∈ ℤ)
427417, 426fsumzcl 15708 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) → Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) ∈ ℤ)
428427fmpttd 7090 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))):Word 𝐴⟶ℤ)
429416, 109, 428elmapdd 8817 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) ∈ (ℤ ↑m Word 𝐴))
430 0zd 12548 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 0 ∈ ℤ)
431428ffund 6695 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → Fun (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))))
432 ccatfn 14544 . . . . . . . . . . . . . . . . . . . . 21 ++ Fn (V × V)
433 fnfun 6621 . . . . . . . . . . . . . . . . . . . . 21 ( ++ Fn (V × V) → Fun ++ )
434432, 433ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 Fun ++
435 imafi 9271 . . . . . . . . . . . . . . . . . . . 20 ((Fun ++ ∧ ((𝑔 supp 0) × (𝑖 supp 0)) ∈ Fin) → ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))) ∈ Fin)
436434, 244, 435sylancr 587 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))) ∈ Fin)
437 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑤 → (♯‘𝑡) = (♯‘𝑤))
438437oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑤 → (0...(♯‘𝑡)) = (0...(♯‘𝑤)))
439 fvoveq1 7413 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑤 → (𝑔‘(𝑡 prefix 𝑗)) = (𝑔‘(𝑤 prefix 𝑗)))
440 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑤𝑡 = 𝑤)
441437opeq2d 4847 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑤 → ⟨𝑗, (♯‘𝑡)⟩ = ⟨𝑗, (♯‘𝑤)⟩)
442440, 441oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑤 → (𝑡 substr ⟨𝑗, (♯‘𝑡)⟩) = (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))
443442fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑤 → (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)) = (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)))
444439, 443oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑤 → ((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) = ((𝑔‘(𝑤 prefix 𝑗)) · (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))))
445444adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 = 𝑤𝑗 ∈ (0...(♯‘𝑡))) → ((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) = ((𝑔‘(𝑤 prefix 𝑗)) · (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))))
446438, 445sumeq12dv 15679 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑤 → Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) = Σ𝑗 ∈ (0...(♯‘𝑤))((𝑔‘(𝑤 prefix 𝑗)) · (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))))
447 oveq1 7397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑢 = (𝑤 prefix 𝑗) → (𝑢 ++ 𝑣) = ((𝑤 prefix 𝑗) ++ 𝑣))
448447eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢 = (𝑤 prefix 𝑗) → (𝑤 = (𝑢 ++ 𝑣) ↔ 𝑤 = ((𝑤 prefix 𝑗) ++ 𝑣)))
449 oveq2 7398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑣 = (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩) → ((𝑤 prefix 𝑗) ++ 𝑣) = ((𝑤 prefix 𝑗) ++ (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)))
450449eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑣 = (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩) → (𝑤 = ((𝑤 prefix 𝑗) ++ 𝑣) ↔ 𝑤 = ((𝑤 prefix 𝑗) ++ (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))))
451246ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → 𝑔 Fn Word 𝐴)
452109ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → Word 𝐴 ∈ V)
453 0zd 12548 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → 0 ∈ ℤ)
454 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) → 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0)))))
455454eldifad 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) → 𝑤 ∈ Word 𝐴)
456455adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → 𝑤 ∈ Word 𝐴)
457 pfxcl 14649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 ∈ Word 𝐴 → (𝑤 prefix 𝑗) ∈ Word 𝐴)
458456, 457syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → (𝑤 prefix 𝑗) ∈ Word 𝐴)
459458ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → (𝑤 prefix 𝑗) ∈ Word 𝐴)
460 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → (𝑔‘(𝑤 prefix 𝑗)) ≠ 0)
461451, 452, 453, 459, 460elsuppfnd 32612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → (𝑤 prefix 𝑗) ∈ (𝑔 supp 0))
462275ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → 𝑖 Fn Word 𝐴)
463 swrdcl 14617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 ∈ Word 𝐴 → (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩) ∈ Word 𝐴)
464456, 463syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩) ∈ Word 𝐴)
465464ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩) ∈ Word 𝐴)
466 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0)
467462, 452, 453, 465, 466elsuppfnd 32612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩) ∈ (𝑖 supp 0))
468456ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → 𝑤 ∈ Word 𝐴)
469 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → 𝑗 ∈ (0...(♯‘𝑤)))
470 pfxcctswrd 14682 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑤 ∈ Word 𝐴𝑗 ∈ (0...(♯‘𝑤))) → ((𝑤 prefix 𝑗) ++ (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 𝑤)
471468, 469, 470syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → ((𝑤 prefix 𝑗) ++ (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 𝑤)
472471eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → 𝑤 = ((𝑤 prefix 𝑗) ++ (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)))
473448, 450, 461, 467, 4722rspcedvdw 3605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → ∃𝑢 ∈ (𝑔 supp 0)∃𝑣 ∈ (𝑖 supp 0)𝑤 = (𝑢 ++ 𝑣))
474 fnov 7523 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ( ++ Fn (V × V) ↔ ++ = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢 ++ 𝑣)))
475432, 474mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ++ = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢 ++ 𝑣))
476200a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⊤ → 𝑤 ∈ V)
477 ssv 3974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑔 supp 0) ⊆ V
478477a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⊤ → (𝑔 supp 0) ⊆ V)
479 ssv 3974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖 supp 0) ⊆ V
480479a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⊤ → (𝑖 supp 0) ⊆ V)
481475, 476, 478, 480elimampo 7529 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⊤ → (𝑤 ∈ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))) ↔ ∃𝑢 ∈ (𝑔 supp 0)∃𝑣 ∈ (𝑖 supp 0)𝑤 = (𝑢 ++ 𝑣)))
482481mptru 1547 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))) ↔ ∃𝑢 ∈ (𝑔 supp 0)∃𝑣 ∈ (𝑖 supp 0)𝑤 = (𝑢 ++ 𝑣))
483473, 482sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → 𝑤 ∈ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))
484483anasss 466 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ ((𝑔‘(𝑤 prefix 𝑗)) ≠ 0 ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0)) → 𝑤 ∈ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))
485454ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0)))))
486485eldifbd 3930 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → ¬ 𝑤 ∈ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))
487486anasss 466 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ ((𝑔‘(𝑤 prefix 𝑗)) ≠ 0 ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0)) → ¬ 𝑤 ∈ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))
488484, 487pm2.65da 816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → ¬ ((𝑔‘(𝑤 prefix 𝑗)) ≠ 0 ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0))
489 df-ne 2927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑔‘(𝑤 prefix 𝑗)) ≠ 0 ↔ ¬ (𝑔‘(𝑤 prefix 𝑗)) = 0)
490 df-ne 2927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0 ↔ ¬ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 0)
491489, 490anbi12i 628 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑔‘(𝑤 prefix 𝑗)) ≠ 0 ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) ↔ (¬ (𝑔‘(𝑤 prefix 𝑗)) = 0 ∧ ¬ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 0))
492491notbii 320 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (¬ ((𝑔‘(𝑤 prefix 𝑗)) ≠ 0 ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) ↔ ¬ (¬ (𝑔‘(𝑤 prefix 𝑗)) = 0 ∧ ¬ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 0))
493 pm4.57 992 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (¬ (¬ (𝑔‘(𝑤 prefix 𝑗)) = 0 ∧ ¬ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 0) ↔ ((𝑔‘(𝑤 prefix 𝑗)) = 0 ∨ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 0))
494492, 493bitr2i 276 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑔‘(𝑤 prefix 𝑗)) = 0 ∨ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 0) ↔ ¬ ((𝑔‘(𝑤 prefix 𝑗)) ≠ 0 ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0))
495488, 494sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → ((𝑔‘(𝑤 prefix 𝑗)) = 0 ∨ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 0))
496294ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → 𝑔:Word 𝐴⟶ℤ)
497496, 458ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → (𝑔‘(𝑤 prefix 𝑗)) ∈ ℤ)
498497zcnd 12646 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → (𝑔‘(𝑤 prefix 𝑗)) ∈ ℂ)
499184ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → 𝑖:Word 𝐴⟶ℤ)
500499, 464ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ∈ ℤ)
501500zcnd 12646 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ∈ ℂ)
502498, 501mul0ord 11833 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → (((𝑔‘(𝑤 prefix 𝑗)) · (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))) = 0 ↔ ((𝑔‘(𝑤 prefix 𝑗)) = 0 ∨ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 0)))
503495, 502mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → ((𝑔‘(𝑤 prefix 𝑗)) · (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))) = 0)
504503sumeq2dv 15675 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) → Σ𝑗 ∈ (0...(♯‘𝑤))((𝑔‘(𝑤 prefix 𝑗)) · (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))) = Σ𝑗 ∈ (0...(♯‘𝑤))0)
505 fzssuz 13533 . . . . . . . . . . . . . . . . . . . . . . . 24 (0...(♯‘𝑤)) ⊆ (ℤ‘0)
506 sumz 15695 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((0...(♯‘𝑤)) ⊆ (ℤ‘0) ∨ (0...(♯‘𝑤)) ∈ Fin) → Σ𝑗 ∈ (0...(♯‘𝑤))0 = 0)
507506orcs 875 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0...(♯‘𝑤)) ⊆ (ℤ‘0) → Σ𝑗 ∈ (0...(♯‘𝑤))0 = 0)
508505, 507mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) → Σ𝑗 ∈ (0...(♯‘𝑤))0 = 0)
509504, 508eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) → Σ𝑗 ∈ (0...(♯‘𝑤))((𝑔‘(𝑤 prefix 𝑗)) · (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))) = 0)
510446, 509sylan9eqr 2787 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑡 = 𝑤) → Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) = 0)
511 0zd 12548 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) → 0 ∈ ℤ)
512370, 510, 455, 511fvmptd2 6979 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) → ((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) = 0)
513428, 512suppss 8176 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) supp 0) ⊆ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))
514436, 513ssfid 9219 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) supp 0) ∈ Fin)
515429, 430, 431, 514isfsuppd 9324 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) finSupp 0)
516415, 429, 515elrabd 3664 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
517516, 6eleqtrrdi 2840 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) ∈ 𝐹)
518 fveq2 6861 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → ((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) = ((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤))
519518, 145oveq12d 7408 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑤 → (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)) = (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) · (𝑀 Σg 𝑤)))
520519cbvmptv 5214 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) · (𝑀 Σg 𝑤)))
521520oveq2i 7401 . . . . . . . . . . . . . . . 16 (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) · (𝑀 Σg 𝑤))))
522521a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) · (𝑀 Σg 𝑤)))))
523414, 517, 522rspcedvdw 3594 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∃𝐹 (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
524 ovexd 7425 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) ∈ V)
525409, 523, 524elrnmptd 5930 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
526525, 8eleqtrrdi 2840 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) ∈ 𝑆)
527404, 526eqeltrd 2829 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
528527adantllr 719 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
529528adantllr 719 . . . . . . . . 9 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
530529adantlr 715 . . . . . . . 8 ((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
531530adantr 480 . . . . . . 7 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
532107, 531eqeltrd 2829 . . . . . 6 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
5338eleq2i 2821 . . . . . . . . 9 (𝑦𝑆𝑦 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
534169oveq2d 7406 . . . . . . . . . . . 12 (𝑔 = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
535534cbvmptv 5214 . . . . . . . . . . 11 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑖𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
536535elrnmpt 5925 . . . . . . . . . 10 (𝑦 ∈ V → (𝑦 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))))
537536elv 3455 . . . . . . . . 9 (𝑦 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
538533, 537sylbb 219 . . . . . . . 8 (𝑦𝑆 → ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
539538adantl 481 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
540539ad2antrr 726 . . . . . 6 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
541532, 540r19.29a 3142 . . . . 5 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
5428eleq2i 2821 . . . . . . 7 (𝑥𝑆𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
54371elrnmpt 5925 . . . . . . . 8 (𝑥 ∈ V → (𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
544543elv 3455 . . . . . . 7 (𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
545542, 544sylbb 219 . . . . . 6 (𝑥𝑆 → ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
546545ad2antlr 727 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
547541, 546r19.29a 3142 . . . 4 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
548547anasss 466 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
549548ralrimivva 3181 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)
5502, 24, 108issubrg2 20508 . . 3 (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)))
551550biimpar 477 . 2 ((𝑅 ∈ Ring ∧ (𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)) → 𝑆 ∈ (SubRing‘𝑅))
5521, 9, 104, 549, 551syl13anc 1374 1 (𝜑𝑆 ∈ (SubRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  wss 3917  c0 4299  ifcif 4491  {csn 4592  cop 4598   class class class wbr 5110  cmpt 5191   × cxp 5639  ran crn 5642  cima 5644  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970   supp csupp 8142  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  cc 11073  0cc0 11075  1c1 11076   · cmul 11080  cz 12536  cuz 12800  ...cfz 13475  chash 14302  Word cword 14485   ++ cconcat 14542   substr csubstr 14612   prefix cpfx 14642  Σcsu 15659  Basecbs 17186  .rcmulr 17228  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  Grpcgrp 18872  .gcmg 19006  SubGrpcsubg 19059  CMndccmn 19717  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  SubRingcsubrg 20485  RingSpancrgspn 20526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-word 14486  df-concat 14543  df-substr 14613  df-pfx 14643  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-subrng 20462  df-subrg 20486  df-cnfld 21272  df-zring 21364
This theorem is referenced by:  elrgspnlem4  33203
  Copyright terms: Public domain W3C validator