Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnlem2 Structured version   Visualization version   GIF version

Theorem elrgspnlem2 33184
Description: Lemma for elrgspn 33187. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
elrgspn.b 𝐵 = (Base‘𝑅)
elrgspn.m 𝑀 = (mulGrp‘𝑅)
elrgspn.x · = (.g𝑅)
elrgspn.n 𝑁 = (RingSpan‘𝑅)
elrgspn.f 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
elrgspn.r (𝜑𝑅 ∈ Ring)
elrgspn.a (𝜑𝐴𝐵)
elrgspnlem1.1 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
Assertion
Ref Expression
elrgspnlem2 (𝜑𝑆 ∈ (SubRing‘𝑅))
Distinct variable groups:   · ,𝑓,𝑔,𝑤   𝐴,𝑓,𝑔,𝑤   𝐵,𝑓,𝑔,𝑤   𝑓,𝐹,𝑔,𝑤   𝑓,𝑀,𝑔,𝑤   𝑅,𝑓,𝑔,𝑤   𝑆,𝑔,𝑤   𝜑,𝑓,𝑔,𝑤
Allowed substitution hints:   𝑆(𝑓)   𝑁(𝑤,𝑓,𝑔)

Proof of Theorem elrgspnlem2
Dummy variables 𝑎 𝑖 𝑗 𝑡 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspn.r . 2 (𝜑𝑅 ∈ Ring)
2 elrgspn.b . . 3 𝐵 = (Base‘𝑅)
3 elrgspn.m . . 3 𝑀 = (mulGrp‘𝑅)
4 elrgspn.x . . 3 · = (.g𝑅)
5 elrgspn.n . . 3 𝑁 = (RingSpan‘𝑅)
6 elrgspn.f . . 3 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
7 elrgspn.a . . 3 (𝜑𝐴𝐵)
8 elrgspnlem1.1 . . 3 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
92, 3, 4, 5, 6, 1, 7, 8elrgspnlem1 33183 . 2 (𝜑𝑆 ∈ (SubGrp‘𝑅))
10 eqeq2 2741 . . . . . . 7 ((1r𝑅) = if(𝑤 = ∅, (1r𝑅), (0g𝑅)) → ((((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (1r𝑅) ↔ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = if(𝑤 = ∅, (1r𝑅), (0g𝑅))))
11 eqeq2 2741 . . . . . . 7 ((0g𝑅) = if(𝑤 = ∅, (1r𝑅), (0g𝑅)) → ((((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅) ↔ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = if(𝑤 = ∅, (1r𝑅), (0g𝑅))))
12 simpr 484 . . . . . . . . . . 11 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → 𝑤 = ∅)
1312fveq2d 6826 . . . . . . . . . 10 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) = ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘∅))
14 eqid 2729 . . . . . . . . . . . 12 (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))
15 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑣 = ∅) → 𝑣 = ∅)
1615iftrued 4484 . . . . . . . . . . . 12 ((𝜑𝑣 = ∅) → if(𝑣 = ∅, 1, 0) = 1)
17 wrd0 14446 . . . . . . . . . . . . 13 ∅ ∈ Word 𝐴
1817a1i 11 . . . . . . . . . . . 12 (𝜑 → ∅ ∈ Word 𝐴)
19 1zzd 12506 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
2014, 16, 18, 19fvmptd2 6938 . . . . . . . . . . 11 (𝜑 → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘∅) = 1)
2120ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘∅) = 1)
2213, 21eqtrd 2764 . . . . . . . . 9 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) = 1)
2312oveq2d 7365 . . . . . . . . . 10 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → (𝑀 Σg 𝑤) = (𝑀 Σg ∅))
24 eqid 2729 . . . . . . . . . . . 12 (1r𝑅) = (1r𝑅)
253, 24ringidval 20068 . . . . . . . . . . 11 (1r𝑅) = (0g𝑀)
2625gsum0 18558 . . . . . . . . . 10 (𝑀 Σg ∅) = (1r𝑅)
2723, 26eqtrdi 2780 . . . . . . . . 9 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → (𝑀 Σg 𝑤) = (1r𝑅))
2822, 27oveq12d 7367 . . . . . . . 8 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (1 · (1r𝑅)))
292, 24ringidcl 20150 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
301, 29syl 17 . . . . . . . . . 10 (𝜑 → (1r𝑅) ∈ 𝐵)
312, 4mulg1 18960 . . . . . . . . . 10 ((1r𝑅) ∈ 𝐵 → (1 · (1r𝑅)) = (1r𝑅))
3230, 31syl 17 . . . . . . . . 9 (𝜑 → (1 · (1r𝑅)) = (1r𝑅))
3332ad2antrr 726 . . . . . . . 8 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → (1 · (1r𝑅)) = (1r𝑅))
3428, 33eqtrd 2764 . . . . . . 7 (((𝜑𝑤 ∈ Word 𝐴) ∧ 𝑤 = ∅) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (1r𝑅))
35 eqeq1 2733 . . . . . . . . . . . . . 14 (𝑣 = 𝑤 → (𝑣 = ∅ ↔ 𝑤 = ∅))
3635notbid 318 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → (¬ 𝑣 = ∅ ↔ ¬ 𝑤 = ∅))
3736biimparc 479 . . . . . . . . . . . 12 ((¬ 𝑤 = ∅ ∧ 𝑣 = 𝑤) → ¬ 𝑣 = ∅)
3837adantll 714 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ∅) ∧ 𝑣 = 𝑤) → ¬ 𝑣 = ∅)
3938iffalsed 4487 . . . . . . . . . 10 ((((𝜑𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ∅) ∧ 𝑣 = 𝑤) → if(𝑣 = ∅, 1, 0) = 0)
40 simplr 768 . . . . . . . . . 10 (((𝜑𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ∅) → 𝑤 ∈ Word 𝐴)
41 0zd 12483 . . . . . . . . . 10 (((𝜑𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ∅) → 0 ∈ ℤ)
4214, 39, 40, 41fvmptd2 6938 . . . . . . . . 9 (((𝜑𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ∅) → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) = 0)
4342oveq1d 7364 . . . . . . . 8 (((𝜑𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ∅) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
443ringmgp 20124 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
451, 44syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ Mnd)
46 sswrd 14429 . . . . . . . . . . . . 13 (𝐴𝐵 → Word 𝐴 ⊆ Word 𝐵)
477, 46syl 17 . . . . . . . . . . . 12 (𝜑 → Word 𝐴 ⊆ Word 𝐵)
4847sselda 3935 . . . . . . . . . . 11 ((𝜑𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
493, 2mgpbas 20030 . . . . . . . . . . . 12 𝐵 = (Base‘𝑀)
5049gsumwcl 18713 . . . . . . . . . . 11 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → (𝑀 Σg 𝑤) ∈ 𝐵)
5145, 48, 50syl2an2r 685 . . . . . . . . . 10 ((𝜑𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
52 eqid 2729 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
532, 52, 4mulg0 18953 . . . . . . . . . 10 ((𝑀 Σg 𝑤) ∈ 𝐵 → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
5451, 53syl 17 . . . . . . . . 9 ((𝜑𝑤 ∈ Word 𝐴) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
5554adantr 480 . . . . . . . 8 (((𝜑𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ∅) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
5643, 55eqtrd 2764 . . . . . . 7 (((𝜑𝑤 ∈ Word 𝐴) ∧ ¬ 𝑤 = ∅) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
5710, 11, 34, 56ifbothda 4515 . . . . . 6 ((𝜑𝑤 ∈ Word 𝐴) → (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)) = if(𝑤 = ∅, (1r𝑅), (0g𝑅)))
5857mpteq2dva 5185 . . . . 5 (𝜑 → (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ∅, (1r𝑅), (0g𝑅))))
5958oveq2d 7365 . . . 4 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ∅, (1r𝑅), (0g𝑅)))))
601ringcmnd 20169 . . . . . 6 (𝜑𝑅 ∈ CMnd)
6160cmnmndd 19683 . . . . 5 (𝜑𝑅 ∈ Mnd)
622fvexi 6836 . . . . . . . 8 𝐵 ∈ V
6362a1i 11 . . . . . . 7 (𝜑𝐵 ∈ V)
6463, 7ssexd 5263 . . . . . 6 (𝜑𝐴 ∈ V)
65 wrdexg 14431 . . . . . 6 (𝐴 ∈ V → Word 𝐴 ∈ V)
6664, 65syl 17 . . . . 5 (𝜑 → Word 𝐴 ∈ V)
67 eqid 2729 . . . . 5 (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ∅, (1r𝑅), (0g𝑅))) = (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ∅, (1r𝑅), (0g𝑅)))
6830, 2eleqtrdi 2838 . . . . 5 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
6952, 61, 66, 18, 67, 68gsummptif1n0 19845 . . . 4 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ if(𝑤 = ∅, (1r𝑅), (0g𝑅)))) = (1r𝑅))
7059, 69eqtrd 2764 . . 3 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) = (1r𝑅))
71 eqid 2729 . . . . 5 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
72 fveq1 6821 . . . . . . . . . 10 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) → (𝑔𝑤) = ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤))
7372oveq1d 7364 . . . . . . . . 9 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))
7473mpteq2dv 5186 . . . . . . . 8 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤))))
7574oveq2d 7365 . . . . . . 7 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))))
7675eqeq2d 2740 . . . . . 6 (𝑔 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤))))))
77 breq1 5095 . . . . . . . 8 (𝑓 = (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) → (𝑓 finSupp 0 ↔ (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) finSupp 0))
78 zex 12480 . . . . . . . . . 10 ℤ ∈ V
7978a1i 11 . . . . . . . . 9 (𝜑 → ℤ ∈ V)
80 1zzd 12506 . . . . . . . . . . 11 (((𝜑𝑣 ∈ Word 𝐴) ∧ 𝑣 = ∅) → 1 ∈ ℤ)
81 0zd 12483 . . . . . . . . . . 11 (((𝜑𝑣 ∈ Word 𝐴) ∧ ¬ 𝑣 = ∅) → 0 ∈ ℤ)
8280, 81ifclda 4512 . . . . . . . . . 10 ((𝜑𝑣 ∈ Word 𝐴) → if(𝑣 = ∅, 1, 0) ∈ ℤ)
8382fmpttd 7049 . . . . . . . . 9 (𝜑 → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)):Word 𝐴⟶ℤ)
8479, 66, 83elmapdd 8768 . . . . . . . 8 (𝜑 → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) ∈ (ℤ ↑m Word 𝐴))
8566mptexd 7160 . . . . . . . . 9 (𝜑 → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) ∈ V)
8683ffund 6656 . . . . . . . . 9 (𝜑 → Fun (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)))
87 0zd 12483 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
88 snfi 8968 . . . . . . . . . 10 {∅} ∈ Fin
8988a1i 11 . . . . . . . . 9 (𝜑 → {∅} ∈ Fin)
90 eldifsni 4741 . . . . . . . . . . . . 13 (𝑣 ∈ (Word 𝐴 ∖ {∅}) → 𝑣 ≠ ∅)
9190adantl 481 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (Word 𝐴 ∖ {∅})) → 𝑣 ≠ ∅)
9291neneqd 2930 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (Word 𝐴 ∖ {∅})) → ¬ 𝑣 = ∅)
9392iffalsed 4487 . . . . . . . . . 10 ((𝜑𝑣 ∈ (Word 𝐴 ∖ {∅})) → if(𝑣 = ∅, 1, 0) = 0)
9493, 66suppss2 8133 . . . . . . . . 9 (𝜑 → ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) supp 0) ⊆ {∅})
95 suppssfifsupp 9270 . . . . . . . . 9 ((((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) ∈ V ∧ Fun (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) ∧ 0 ∈ ℤ) ∧ ({∅} ∈ Fin ∧ ((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) supp 0) ⊆ {∅})) → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) finSupp 0)
9685, 86, 87, 89, 94, 95syl32anc 1380 . . . . . . . 8 (𝜑 → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) finSupp 0)
9777, 84, 96elrabd 3650 . . . . . . 7 (𝜑 → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
9897, 6eleqtrrdi 2839 . . . . . 6 (𝜑 → (𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0)) ∈ 𝐹)
99 eqidd 2730 . . . . . 6 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))))
10076, 98, 99rspcedvdw 3580 . . . . 5 (𝜑 → ∃𝑔𝐹 (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
101 ovexd 7384 . . . . 5 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) ∈ V)
10271, 100, 101elrnmptd 5905 . . . 4 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
103102, 8eleqtrrdi 2839 . . 3 (𝜑 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑣 ∈ Word 𝐴 ↦ if(𝑣 = ∅, 1, 0))‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑆)
10470, 103eqeltrrd 2829 . 2 (𝜑 → (1r𝑅) ∈ 𝑆)
105 simpllr 775 . . . . . . . 8 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
106 simpr 484 . . . . . . . 8 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
107105, 106oveq12d 7367 . . . . . . 7 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(.r𝑅)𝑦) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))))
108 eqid 2729 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
10966ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → Word 𝐴 ∈ V)
1101ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑅 ∈ Ring)
1111ringgrpd 20127 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Grp)
112111ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
1136ssrab3 4033 . . . . . . . . . . . . . . . . . . . . . . 23 𝐹 ⊆ (ℤ ↑m Word 𝐴)
114113a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹 ⊆ (ℤ ↑m Word 𝐴))
115114sselda 3935 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑔𝐹) → 𝑔 ∈ (ℤ ↑m Word 𝐴))
11679, 66elmapd 8767 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑔 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑔:Word 𝐴⟶ℤ))
117116adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑔𝐹) → (𝑔 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑔:Word 𝐴⟶ℤ))
118115, 117mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑔𝐹) → 𝑔:Word 𝐴⟶ℤ)
119118ffvelcdmda 7018 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑔𝑤) ∈ ℤ)
12051adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
1212, 4, 112, 119, 120mulgcld 18975 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
122121adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
123122ralrimiva 3121 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∀𝑤 ∈ Word 𝐴((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
124 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑤 → (𝑔𝑢) = (𝑔𝑤))
125 oveq2 7357 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑤 → (𝑀 Σg 𝑢) = (𝑀 Σg 𝑤))
126124, 125oveq12d 7367 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑤 → ((𝑔𝑢) · (𝑀 Σg 𝑢)) = ((𝑔𝑤) · (𝑀 Σg 𝑤)))
127126eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑤 → (((𝑔𝑢) · (𝑀 Σg 𝑢)) ∈ 𝐵 ↔ ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵))
128127cbvralvw 3207 . . . . . . . . . . . . . . . 16 (∀𝑢 ∈ Word 𝐴((𝑔𝑢) · (𝑀 Σg 𝑢)) ∈ 𝐵 ↔ ∀𝑤 ∈ Word 𝐴((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
129123, 128sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∀𝑢 ∈ Word 𝐴((𝑔𝑢) · (𝑀 Σg 𝑢)) ∈ 𝐵)
130129r19.21bi 3221 . . . . . . . . . . . . . 14 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑢 ∈ Word 𝐴) → ((𝑔𝑢) · (𝑀 Σg 𝑢)) ∈ 𝐵)
131111ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
132 breq1 5095 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑖 → (𝑓 finSupp 0 ↔ 𝑖 finSupp 0))
133132, 6elrab2 3651 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖𝐹 ↔ (𝑖 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑖 finSupp 0))
134133simplbi 497 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖𝐹𝑖 ∈ (ℤ ↑m Word 𝐴))
135134adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝐹) → 𝑖 ∈ (ℤ ↑m Word 𝐴))
13679, 66elmapd 8767 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑖 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑖:Word 𝐴⟶ℤ))
137136adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝐹) → (𝑖 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑖:Word 𝐴⟶ℤ))
138135, 137mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐹) → 𝑖:Word 𝐴⟶ℤ)
139138ffvelcdmda 7018 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑖𝑤) ∈ ℤ)
14051adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
1412, 4, 131, 139, 140mulgcld 18975 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑖𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
142141adantllr 719 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → ((𝑖𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
143142ralrimiva 3121 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∀𝑤 ∈ Word 𝐴((𝑖𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
144 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → (𝑖𝑣) = (𝑖𝑤))
145 oveq2 7357 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → (𝑀 Σg 𝑣) = (𝑀 Σg 𝑤))
146144, 145oveq12d 7367 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑤 → ((𝑖𝑣) · (𝑀 Σg 𝑣)) = ((𝑖𝑤) · (𝑀 Σg 𝑤)))
147146eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑤 → (((𝑖𝑣) · (𝑀 Σg 𝑣)) ∈ 𝐵 ↔ ((𝑖𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵))
148147cbvralvw 3207 . . . . . . . . . . . . . . . 16 (∀𝑣 ∈ Word 𝐴((𝑖𝑣) · (𝑀 Σg 𝑣)) ∈ 𝐵 ↔ ∀𝑤 ∈ Word 𝐴((𝑖𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
149143, 148sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∀𝑣 ∈ Word 𝐴((𝑖𝑣) · (𝑀 Σg 𝑣)) ∈ 𝐵)
150149r19.21bi 3221 . . . . . . . . . . . . . 14 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → ((𝑖𝑣) · (𝑀 Σg 𝑣)) ∈ 𝐵)
151126cbvmptv 5196 . . . . . . . . . . . . . . 15 (𝑢 ∈ Word 𝐴 ↦ ((𝑔𝑢) · (𝑀 Σg 𝑢))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))
152 fvexd 6837 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔𝐹) → (0g𝑅) ∈ V)
153 0zd 12483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔𝐹) → 0 ∈ ℤ)
15466adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔𝐹) → Word 𝐴 ∈ V)
155 ssidd 3959 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔𝐹) → Word 𝐴 ⊆ Word 𝐴)
156 breq1 5095 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → (𝑓 finSupp 0 ↔ 𝑔 finSupp 0))
157156, 6elrab2 3651 . . . . . . . . . . . . . . . . . . 19 (𝑔𝐹 ↔ (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑔 finSupp 0))
158157simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑔𝐹𝑔 finSupp 0)
159158adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔𝐹) → 𝑔 finSupp 0)
1602, 52, 4mulg0 18953 . . . . . . . . . . . . . . . . . 18 (𝑦𝐵 → (0 · 𝑦) = (0g𝑅))
161160adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑦𝐵) → (0 · 𝑦) = (0g𝑅))
162152, 153, 154, 155, 120, 118, 159, 161fisuppov1 32626 . . . . . . . . . . . . . . . 16 ((𝜑𝑔𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
163162adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
164151, 163eqbrtrid 5127 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑢 ∈ Word 𝐴 ↦ ((𝑔𝑢) · (𝑀 Σg 𝑢))) finSupp (0g𝑅))
165146cbvmptv 5196 . . . . . . . . . . . . . . 15 (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))
166162ralrimiva 3121 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑔𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
167 fveq1 6821 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = 𝑖 → (𝑔𝑤) = (𝑖𝑤))
168167oveq1d 7364 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑖 → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = ((𝑖𝑤) · (𝑀 Σg 𝑤)))
169168mpteq2dv 5186 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑖 → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))
170169breq1d 5102 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑖 → ((𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅) ↔ (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅)))
171170cbvralvw 3207 . . . . . . . . . . . . . . . . . 18 (∀𝑔𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅) ↔ ∀𝑖𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
172166, 171sylib 218 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑖𝐹 (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
173172r19.21bi 3221 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
174173adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))) finSupp (0g𝑅))
175165, 174eqbrtrid 5127 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣))) finSupp (0g𝑅))
1762, 108, 52, 109, 109, 110, 130, 150, 164, 175gsumdixp 20204 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑢 ∈ Word 𝐴 ↦ ((𝑔𝑢) · (𝑀 Σg 𝑢))))(.r𝑅)(𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣))))) = (𝑅 Σg (𝑢 ∈ Word 𝐴, 𝑣 ∈ Word 𝐴 ↦ (((𝑔𝑢) · (𝑀 Σg 𝑢))(.r𝑅)((𝑖𝑣) · (𝑀 Σg 𝑣))))))
177151oveq2i 7360 . . . . . . . . . . . . . . 15 (𝑅 Σg (𝑢 ∈ Word 𝐴 ↦ ((𝑔𝑢) · (𝑀 Σg 𝑢)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))
178165oveq2i 7360 . . . . . . . . . . . . . . 15 (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))
179177, 178oveq12i 7361 . . . . . . . . . . . . . 14 ((𝑅 Σg (𝑢 ∈ Word 𝐴 ↦ ((𝑔𝑢) · (𝑀 Σg 𝑢))))(.r𝑅)(𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣))))) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
180179a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑢 ∈ Word 𝐴 ↦ ((𝑔𝑢) · (𝑀 Σg 𝑢))))(.r𝑅)(𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ ((𝑖𝑣) · (𝑀 Σg 𝑣))))) = ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))))
181110ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → 𝑅 ∈ Ring)
182122adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → ((𝑔𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
183111ad4antr 732 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → 𝑅 ∈ Grp)
184138adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖:Word 𝐴⟶ℤ)
185184ffvelcdmda 7018 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑓 ∈ Word 𝐴) → (𝑖𝑓) ∈ ℤ)
186185adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (𝑖𝑓) ∈ ℤ)
18745ad4antr 732 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → 𝑀 ∈ Mnd)
18847adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑔𝐹) → Word 𝐴 ⊆ Word 𝐵)
189188ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) → Word 𝐴 ⊆ Word 𝐵)
190189sselda 3935 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → 𝑓 ∈ Word 𝐵)
19149gsumwcl 18713 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵) → (𝑀 Σg 𝑓) ∈ 𝐵)
192187, 190, 191syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (𝑀 Σg 𝑓) ∈ 𝐵)
1932, 4, 183, 186, 192mulgcld 18975 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → ((𝑖𝑓) · (𝑀 Σg 𝑓)) ∈ 𝐵)
1942, 108, 181, 182, 193ringcld 20145 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) ∈ 𝐵)
195194anasss 466 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ (𝑤 ∈ Word 𝐴𝑓 ∈ Word 𝐴)) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) ∈ 𝐵)
196195ralrimivva 3172 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∀𝑤 ∈ Word 𝐴𝑓 ∈ Word 𝐴(((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) ∈ 𝐵)
197 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))) = (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))
198197fmpo 8003 . . . . . . . . . . . . . . . 16 (∀𝑤 ∈ Word 𝐴𝑓 ∈ Word 𝐴(((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) ∈ 𝐵 ↔ (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))):(Word 𝐴 × Word 𝐴)⟶𝐵)
199196, 198sylib 218 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))):(Word 𝐴 × Word 𝐴)⟶𝐵)
200 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
201 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑓 ∈ V
202200, 201op1std 7934 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = ⟨𝑤, 𝑓⟩ → (1st𝑎) = 𝑤)
203202fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (𝑎 = ⟨𝑤, 𝑓⟩ → (𝑔‘(1st𝑎)) = (𝑔𝑤))
204202oveq2d 7365 . . . . . . . . . . . . . . . . . . 19 (𝑎 = ⟨𝑤, 𝑓⟩ → (𝑀 Σg (1st𝑎)) = (𝑀 Σg 𝑤))
205203, 204oveq12d 7367 . . . . . . . . . . . . . . . . . 18 (𝑎 = ⟨𝑤, 𝑓⟩ → ((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎))) = ((𝑔𝑤) · (𝑀 Σg 𝑤)))
206200, 201op2ndd 7935 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = ⟨𝑤, 𝑓⟩ → (2nd𝑎) = 𝑓)
207206fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (𝑎 = ⟨𝑤, 𝑓⟩ → (𝑖‘(2nd𝑎)) = (𝑖𝑓))
208206oveq2d 7365 . . . . . . . . . . . . . . . . . . 19 (𝑎 = ⟨𝑤, 𝑓⟩ → (𝑀 Σg (2nd𝑎)) = (𝑀 Σg 𝑓))
209207, 208oveq12d 7367 . . . . . . . . . . . . . . . . . 18 (𝑎 = ⟨𝑤, 𝑓⟩ → ((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))) = ((𝑖𝑓) · (𝑀 Σg 𝑓)))
210205, 209oveq12d 7367 . . . . . . . . . . . . . . . . 17 (𝑎 = ⟨𝑤, 𝑓⟩ → (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))
211210mpompt 7463 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))))) = (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))
21266, 66xpexd 7687 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Word 𝐴 × Word 𝐴) ∈ V)
213212ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (Word 𝐴 × Word 𝐴) ∈ V)
214213mptexd 7160 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))))) ∈ V)
215 fvexd 6837 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (0g𝑅) ∈ V)
216110adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 𝑅 ∈ Ring)
217111ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 𝑅 ∈ Grp)
218118ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 𝑔:Word 𝐴⟶ℤ)
219 xp1st 7956 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ (Word 𝐴 × Word 𝐴) → (1st𝑎) ∈ Word 𝐴)
220219adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (1st𝑎) ∈ Word 𝐴)
221218, 220ffvelcdmd 7019 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (𝑔‘(1st𝑎)) ∈ ℤ)
222216, 44syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 𝑀 ∈ Mnd)
223188ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → Word 𝐴 ⊆ Word 𝐵)
224223, 220sseldd 3936 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (1st𝑎) ∈ Word 𝐵)
22549gsumwcl 18713 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ Mnd ∧ (1st𝑎) ∈ Word 𝐵) → (𝑀 Σg (1st𝑎)) ∈ 𝐵)
226222, 224, 225syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (𝑀 Σg (1st𝑎)) ∈ 𝐵)
2272, 4, 217, 221, 226mulgcld 18975 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → ((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎))) ∈ 𝐵)
228184adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 𝑖:Word 𝐴⟶ℤ)
229 xp2nd 7957 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ (Word 𝐴 × Word 𝐴) → (2nd𝑎) ∈ Word 𝐴)
230229adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (2nd𝑎) ∈ Word 𝐴)
231228, 230ffvelcdmd 7019 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (𝑖‘(2nd𝑎)) ∈ ℤ)
232223, 230sseldd 3936 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (2nd𝑎) ∈ Word 𝐵)
23349gsumwcl 18713 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ Mnd ∧ (2nd𝑎) ∈ Word 𝐵) → (𝑀 Σg (2nd𝑎)) ∈ 𝐵)
234222, 232, 233syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (𝑀 Σg (2nd𝑎)) ∈ 𝐵)
2352, 4, 217, 231, 234mulgcld 18975 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → ((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))) ∈ 𝐵)
2362, 108, 216, 227, 235ringcld 20145 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))) ∈ 𝐵)
237236fmpttd 7049 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))))):(Word 𝐴 × Word 𝐴)⟶𝐵)
238237ffund 6656 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → Fun (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))))))
239159fsuppimpd 9259 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔𝐹) → (𝑔 supp 0) ∈ Fin)
240133simprbi 496 . . . . . . . . . . . . . . . . . . . . 21 (𝑖𝐹𝑖 finSupp 0)
241240adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖 finSupp 0)
242241fsuppimpd 9259 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑖 supp 0) ∈ Fin)
243 xpfi 9209 . . . . . . . . . . . . . . . . . . 19 (((𝑔 supp 0) ∈ Fin ∧ (𝑖 supp 0) ∈ Fin) → ((𝑔 supp 0) × (𝑖 supp 0)) ∈ Fin)
244239, 242, 243syl2an2r 685 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑔 supp 0) × (𝑖 supp 0)) ∈ Fin)
245118ffnd 6653 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑔𝐹) → 𝑔 Fn Word 𝐴)
246245adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔 Fn Word 𝐴)
247246ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → 𝑔 Fn Word 𝐴)
248109ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → Word 𝐴 ∈ V)
249 0zd 12483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → 0 ∈ ℤ)
250 xp1st 7956 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴) → (1st𝑎) ∈ (Word 𝐴 ∖ (𝑔 supp 0)))
251250adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (1st𝑎) ∈ (Word 𝐴 ∖ (𝑔 supp 0)))
252247, 248, 249, 251fvdifsupp 8104 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (𝑔‘(1st𝑎)) = 0)
253252oveq1d 7364 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → ((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎))) = (0 · (𝑀 Σg (1st𝑎))))
25445ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → 𝑀 ∈ Mnd)
255188ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → Word 𝐴 ⊆ Word 𝐵)
256251eldifad 3915 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (1st𝑎) ∈ Word 𝐴)
257255, 256sseldd 3936 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (1st𝑎) ∈ Word 𝐵)
258254, 257, 225syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (𝑀 Σg (1st𝑎)) ∈ 𝐵)
2592, 52, 4mulg0 18953 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 Σg (1st𝑎)) ∈ 𝐵 → (0 · (𝑀 Σg (1st𝑎))) = (0g𝑅))
260258, 259syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (0 · (𝑀 Σg (1st𝑎))) = (0g𝑅))
261253, 260eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → ((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎))) = (0g𝑅))
262261oveq1d 7364 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))) = ((0g𝑅)(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))))
263110ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → 𝑅 ∈ Ring)
264111ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → 𝑅 ∈ Grp)
265184ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → 𝑖:Word 𝐴⟶ℤ)
266 xp2nd 7957 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴) → (2nd𝑎) ∈ Word 𝐴)
267266adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (2nd𝑎) ∈ Word 𝐴)
268265, 267ffvelcdmd 7019 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (𝑖‘(2nd𝑎)) ∈ ℤ)
269255, 267sseldd 3936 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (2nd𝑎) ∈ Word 𝐵)
270254, 269, 233syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (𝑀 Σg (2nd𝑎)) ∈ 𝐵)
2712, 4, 264, 268, 270mulgcld 18975 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → ((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))) ∈ 𝐵)
2722, 108, 52, 263, 271ringlzd 20180 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → ((0g𝑅)(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))) = (0g𝑅))
273262, 272eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴)) → (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))) = (0g𝑅))
274138ffnd 6653 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑖𝐹) → 𝑖 Fn Word 𝐴)
275274adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑖 Fn Word 𝐴)
276275ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → 𝑖 Fn Word 𝐴)
277109ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → Word 𝐴 ∈ V)
278 0zd 12483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → 0 ∈ ℤ)
279 xp2nd 7957 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0))) → (2nd𝑎) ∈ (Word 𝐴 ∖ (𝑖 supp 0)))
280279adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (2nd𝑎) ∈ (Word 𝐴 ∖ (𝑖 supp 0)))
281276, 277, 278, 280fvdifsupp 8104 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (𝑖‘(2nd𝑎)) = 0)
282281oveq1d 7364 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → ((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))) = (0 · (𝑀 Σg (2nd𝑎))))
28345ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → 𝑀 ∈ Mnd)
284188ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → Word 𝐴 ⊆ Word 𝐵)
285280eldifad 3915 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (2nd𝑎) ∈ Word 𝐴)
286284, 285sseldd 3936 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (2nd𝑎) ∈ Word 𝐵)
287283, 286, 233syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (𝑀 Σg (2nd𝑎)) ∈ 𝐵)
2882, 52, 4mulg0 18953 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀 Σg (2nd𝑎)) ∈ 𝐵 → (0 · (𝑀 Σg (2nd𝑎))) = (0g𝑅))
289287, 288syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (0 · (𝑀 Σg (2nd𝑎))) = (0g𝑅))
290282, 289eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → ((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))) = (0g𝑅))
291290oveq2d 7365 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))) = (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)(0g𝑅)))
292110ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → 𝑅 ∈ Ring)
293111ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → 𝑅 ∈ Grp)
294118adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑔:Word 𝐴⟶ℤ)
295294ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → 𝑔:Word 𝐴⟶ℤ)
296 xp1st 7956 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0))) → (1st𝑎) ∈ Word 𝐴)
297296adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (1st𝑎) ∈ Word 𝐴)
298295, 297ffvelcdmd 7019 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (𝑔‘(1st𝑎)) ∈ ℤ)
299284, 297sseldd 3936 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (1st𝑎) ∈ Word 𝐵)
300283, 299, 225syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (𝑀 Σg (1st𝑎)) ∈ 𝐵)
3012, 4, 293, 298, 300mulgcld 18975 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → ((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎))) ∈ 𝐵)
3022, 108, 52, 292, 301ringrzd 20181 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)(0g𝑅)) = (0g𝑅))
303291, 302eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) ∧ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) → (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))) = (0g𝑅))
304 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) → 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0))))
305 difxp 6113 . . . . . . . . . . . . . . . . . . . . . 22 ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0))) = (((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴) ∪ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0))))
306304, 305eleqtrdi 2838 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) → 𝑎 ∈ (((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴) ∪ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))))
307 elun 4104 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ (((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴) ∪ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))) ↔ (𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴) ∨ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))))
308306, 307sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) → (𝑎 ∈ ((Word 𝐴 ∖ (𝑔 supp 0)) × Word 𝐴) ∨ 𝑎 ∈ (Word 𝐴 × (Word 𝐴 ∖ (𝑖 supp 0)))))
309273, 303, 308mpjaodan 960 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑎 ∈ ((Word 𝐴 × Word 𝐴) ∖ ((𝑔 supp 0) × (𝑖 supp 0)))) → (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎)))) = (0g𝑅))
310309, 213suppss2 8133 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))))) supp (0g𝑅)) ⊆ ((𝑔 supp 0) × (𝑖 supp 0)))
311244, 310ssfid 9158 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))))) supp (0g𝑅)) ∈ Fin)
312214, 215, 238, 311isfsuppd 9256 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ (((𝑔‘(1st𝑎)) · (𝑀 Σg (1st𝑎)))(.r𝑅)((𝑖‘(2nd𝑎)) · (𝑀 Σg (2nd𝑎))))) finSupp (0g𝑅))
313211, 312eqbrtrrid 5128 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))) finSupp (0g𝑅))
31460ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝑅 ∈ CMnd)
3157ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 𝐴𝐵)
3162, 52, 199, 313, 314, 315gsumwrd2dccat 33021 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))) = (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ ((𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))‘⟨(𝑣 prefix 𝑗), (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)⟩))))))
317126oveq1d 7364 . . . . . . . . . . . . . . . . 17 (𝑢 = 𝑤 → (((𝑔𝑢) · (𝑀 Σg 𝑢))(.r𝑅)((𝑖𝑣) · (𝑀 Σg 𝑣))) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑣) · (𝑀 Σg 𝑣))))
318 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑓 → (𝑖𝑣) = (𝑖𝑓))
319 oveq2 7357 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑓 → (𝑀 Σg 𝑣) = (𝑀 Σg 𝑓))
320318, 319oveq12d 7367 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑓 → ((𝑖𝑣) · (𝑀 Σg 𝑣)) = ((𝑖𝑓) · (𝑀 Σg 𝑓)))
321320oveq2d 7365 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑓 → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑣) · (𝑀 Σg 𝑣))) = (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))
322317, 321cbvmpov 7444 . . . . . . . . . . . . . . . 16 (𝑢 ∈ Word 𝐴, 𝑣 ∈ Word 𝐴 ↦ (((𝑔𝑢) · (𝑀 Σg 𝑢))(.r𝑅)((𝑖𝑣) · (𝑀 Σg 𝑣)))) = (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))
323322oveq2i 7360 . . . . . . . . . . . . . . 15 (𝑅 Σg (𝑢 ∈ Word 𝐴, 𝑣 ∈ Word 𝐴 ↦ (((𝑔𝑢) · (𝑀 Σg 𝑢))(.r𝑅)((𝑖𝑣) · (𝑀 Σg 𝑣))))) = (𝑅 Σg (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))))
324323a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑢 ∈ Word 𝐴, 𝑣 ∈ Word 𝐴 ↦ (((𝑔𝑢) · (𝑀 Σg 𝑢))(.r𝑅)((𝑖𝑣) · (𝑀 Σg 𝑣))))) = (𝑅 Σg (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))))
325 pfxcctswrd 14616 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣 ∈ Word 𝐴𝑗 ∈ (0...(♯‘𝑣))) → ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) = 𝑣)
326325adantll 714 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) = 𝑣)
327326oveq2d 7365 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) = (𝑀 Σg 𝑣))
328327oveq2d 7365 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))) = (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg 𝑣)))
329328mpteq2dva 5185 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (𝑗 ∈ (0...(♯‘𝑣)) ↦ (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))))) = (𝑗 ∈ (0...(♯‘𝑣)) ↦ (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg 𝑣))))
330329oveq2d 7365 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))))) = (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg 𝑣)))))
331 df-ov 7352 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 prefix 𝑗)(𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) = ((𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))‘⟨(𝑣 prefix 𝑗), (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)⟩)
332188sselda 3935 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑔𝐹) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
333332ad4ant13 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
334187, 333, 50syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
3352, 4, 108mulgass3 20238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ Ring ∧ ((𝑖𝑓) ∈ ℤ ∧ (𝑀 Σg 𝑤) ∈ 𝐵 ∧ (𝑀 Σg 𝑓) ∈ 𝐵)) → ((𝑀 Σg 𝑤)(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = ((𝑖𝑓) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓))))
336181, 186, 334, 192, 335syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → ((𝑀 Σg 𝑤)(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = ((𝑖𝑓) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓))))
337336oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → ((𝑔𝑤) · ((𝑀 Σg 𝑤)(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))) = ((𝑔𝑤) · ((𝑖𝑓) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓)))))
338119ad4ant13 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (𝑔𝑤) ∈ ℤ)
3392, 4, 108mulgass2 20194 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ Ring ∧ ((𝑔𝑤) ∈ ℤ ∧ (𝑀 Σg 𝑤) ∈ 𝐵 ∧ ((𝑖𝑓) · (𝑀 Σg 𝑓)) ∈ 𝐵)) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = ((𝑔𝑤) · ((𝑀 Σg 𝑤)(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))))
340181, 338, 334, 193, 339syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = ((𝑔𝑤) · ((𝑀 Σg 𝑤)(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))))
3412, 108, 181, 334, 192ringcld 20145 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓)) ∈ 𝐵)
3422, 4mulgass 18990 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ Grp ∧ ((𝑔𝑤) ∈ ℤ ∧ (𝑖𝑓) ∈ ℤ ∧ ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓)) ∈ 𝐵)) → (((𝑔𝑤) · (𝑖𝑓)) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓))) = ((𝑔𝑤) · ((𝑖𝑓) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓)))))
343183, 338, 186, 341, 342syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑖𝑓)) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓))) = ((𝑔𝑤) · ((𝑖𝑓) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓)))))
344337, 340, 3433eqtr4d 2774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = (((𝑔𝑤) · (𝑖𝑓)) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓))))
3453, 108mgpplusg 20029 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (.r𝑅) = (+g𝑀)
34649, 345gsumccat 18715 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵𝑓 ∈ Word 𝐵) → (𝑀 Σg (𝑤 ++ 𝑓)) = ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓)))
347187, 333, 190, 346syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (𝑀 Σg (𝑤 ++ 𝑓)) = ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓)))
348347oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑖𝑓)) · (𝑀 Σg (𝑤 ++ 𝑓))) = (((𝑔𝑤) · (𝑖𝑓)) · ((𝑀 Σg 𝑤)(.r𝑅)(𝑀 Σg 𝑓))))
349344, 348eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = (((𝑔𝑤) · (𝑖𝑓)) · (𝑀 Σg (𝑤 ++ 𝑓))))
350349adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = (((𝑔𝑤) · (𝑖𝑓)) · (𝑀 Σg (𝑤 ++ 𝑓))))
351350adantllr 719 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) ∧ 𝑤 ∈ Word 𝐴) ∧ 𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = (((𝑔𝑤) · (𝑖𝑓)) · (𝑀 Σg (𝑤 ++ 𝑓))))
3523513impa 1109 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) ∧ 𝑤 ∈ Word 𝐴𝑓 ∈ Word 𝐴) → (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))) = (((𝑔𝑤) · (𝑖𝑓)) · (𝑀 Σg (𝑤 ++ 𝑓))))
353352mpoeq3dva 7426 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓)))) = (𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑖𝑓)) · (𝑀 Σg (𝑤 ++ 𝑓)))))
354 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = (𝑣 prefix 𝑗) → (𝑔𝑤) = (𝑔‘(𝑣 prefix 𝑗)))
355 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩) → (𝑖𝑓) = (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))
356354, 355oveqan12d 7368 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 = (𝑣 prefix 𝑗) ∧ 𝑓 = (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) → ((𝑔𝑤) · (𝑖𝑓)) = ((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))))
357 oveq12 7358 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑤 = (𝑣 prefix 𝑗) ∧ 𝑓 = (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) → (𝑤 ++ 𝑓) = ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))
358357oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 = (𝑣 prefix 𝑗) ∧ 𝑓 = (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) → (𝑀 Σg (𝑤 ++ 𝑓)) = (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))))
359356, 358oveq12d 7367 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤 = (𝑣 prefix 𝑗) ∧ 𝑓 = (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) → (((𝑔𝑤) · (𝑖𝑓)) · (𝑀 Σg (𝑤 ++ 𝑓))) = (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))))
360359adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) ∧ (𝑤 = (𝑣 prefix 𝑗) ∧ 𝑓 = (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) → (((𝑔𝑤) · (𝑖𝑓)) · (𝑀 Σg (𝑤 ++ 𝑓))) = (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))))
361 pfxcl 14584 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ Word 𝐴 → (𝑣 prefix 𝑗) ∈ Word 𝐴)
362361ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → (𝑣 prefix 𝑗) ∈ Word 𝐴)
363 swrdcl 14552 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ Word 𝐴 → (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩) ∈ Word 𝐴)
364363ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩) ∈ Word 𝐴)
365 ovexd 7384 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))) ∈ V)
366353, 360, 362, 364, 365ovmpod 7501 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → ((𝑣 prefix 𝑗)(𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) = (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))))
367331, 366eqtr3id 2778 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → ((𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))‘⟨(𝑣 prefix 𝑗), (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)⟩) = (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))))
368367mpteq2dva 5185 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (𝑗 ∈ (0...(♯‘𝑣)) ↦ ((𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))‘⟨(𝑣 prefix 𝑗), (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)⟩)) = (𝑗 ∈ (0...(♯‘𝑣)) ↦ (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))))))
369368oveq2d 7365 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ ((𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))‘⟨(𝑣 prefix 𝑗), (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)⟩))) = (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg ((𝑣 prefix 𝑗) ++ (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))))))
370 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) = (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))
371 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑣 → (♯‘𝑡) = (♯‘𝑣))
372371oveq2d 7365 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑣 → (0...(♯‘𝑡)) = (0...(♯‘𝑣)))
373 fvoveq1 7372 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑣 → (𝑔‘(𝑡 prefix 𝑗)) = (𝑔‘(𝑣 prefix 𝑗)))
374 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑣𝑡 = 𝑣)
375371opeq2d 4831 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑣 → ⟨𝑗, (♯‘𝑡)⟩ = ⟨𝑗, (♯‘𝑣)⟩)
376374, 375oveq12d 7367 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑣 → (𝑡 substr ⟨𝑗, (♯‘𝑡)⟩) = (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))
377376fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑣 → (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)) = (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)))
378373, 377oveq12d 7367 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑣 → ((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) = ((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))))
379378adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 = 𝑣𝑗 ∈ (0...(♯‘𝑡))) → ((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) = ((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))))
380372, 379sumeq12dv 15613 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑣 → Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) = Σ𝑗 ∈ (0...(♯‘𝑣))((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))))
381 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → 𝑣 ∈ Word 𝐴)
382 fzfid 13880 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (0...(♯‘𝑣)) ∈ Fin)
383294ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → 𝑔:Word 𝐴⟶ℤ)
384383, 362ffvelcdmd 7019 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → (𝑔‘(𝑣 prefix 𝑗)) ∈ ℤ)
385184ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → 𝑖:Word 𝐴⟶ℤ)
386385, 364ffvelcdmd 7019 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)) ∈ ℤ)
387384, 386zmulcld 12586 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → ((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) ∈ ℤ)
388387zcnd 12581 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑣))) → ((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) ∈ ℂ)
389382, 388fsumcl 15640 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → Σ𝑗 ∈ (0...(♯‘𝑣))((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) ∈ ℂ)
390370, 380, 381, 389fvmptd3 6953 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → ((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) = Σ𝑗 ∈ (0...(♯‘𝑣))((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))))
391390oveq1d 7364 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)) = (Σ𝑗 ∈ (0...(♯‘𝑣))((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg 𝑣)))
392111ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → 𝑅 ∈ Grp)
39345ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → 𝑀 ∈ Mnd)
394315, 46syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → Word 𝐴 ⊆ Word 𝐵)
395394sselda 3935 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → 𝑣 ∈ Word 𝐵)
39649gsumwcl 18713 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ Word 𝐵) → (𝑀 Σg 𝑣) ∈ 𝐵)
397393, 395, 396syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (𝑀 Σg 𝑣) ∈ 𝐵)
3982, 4, 392, 382, 397, 387gsummulgc2 33014 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg 𝑣)))) = (Σ𝑗 ∈ (0...(♯‘𝑣))((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg 𝑣)))
399391, 398eqtr4d 2767 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)) = (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ (((𝑔‘(𝑣 prefix 𝑗)) · (𝑖‘(𝑣 substr ⟨𝑗, (♯‘𝑣)⟩))) · (𝑀 Σg 𝑣)))))
400330, 369, 3993eqtr4rd 2775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑣 ∈ Word 𝐴) → (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)) = (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ ((𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))‘⟨(𝑣 prefix 𝑗), (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)⟩))))
401400mpteq2dva 5185 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣))) = (𝑣 ∈ Word 𝐴 ↦ (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ ((𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))‘⟨(𝑣 prefix 𝑗), (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)⟩)))))
402401oveq2d 7365 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) = (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (𝑅 Σg (𝑗 ∈ (0...(♯‘𝑣)) ↦ ((𝑤 ∈ Word 𝐴, 𝑓 ∈ Word 𝐴 ↦ (((𝑔𝑤) · (𝑀 Σg 𝑤))(.r𝑅)((𝑖𝑓) · (𝑀 Σg 𝑓))))‘⟨(𝑣 prefix 𝑗), (𝑣 substr ⟨𝑗, (♯‘𝑣)⟩)⟩))))))
403316, 324, 4023eqtr4d 2774 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑢 ∈ Word 𝐴, 𝑣 ∈ Word 𝐴 ↦ (((𝑔𝑢) · (𝑀 Σg 𝑢))(.r𝑅)((𝑖𝑣) · (𝑀 Σg 𝑣))))) = (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))))
404176, 180, 4033eqtr3d 2772 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) = (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))))
405 fveq1 6821 . . . . . . . . . . . . . . . . . 18 (𝑔 = → (𝑔𝑤) = (𝑤))
406405oveq1d 7364 . . . . . . . . . . . . . . . . 17 (𝑔 = → ((𝑔𝑤) · (𝑀 Σg 𝑤)) = ((𝑤) · (𝑀 Σg 𝑤)))
407406mpteq2dv 5186 . . . . . . . . . . . . . . . 16 (𝑔 = → (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))))
408407oveq2d 7365 . . . . . . . . . . . . . . 15 (𝑔 = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
409408cbvmptv 5196 . . . . . . . . . . . . . 14 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
410 fveq1 6821 . . . . . . . . . . . . . . . . . . 19 ( = (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) → (𝑤) = ((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤))
411410oveq1d 7364 . . . . . . . . . . . . . . . . . 18 ( = (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) → ((𝑤) · (𝑀 Σg 𝑤)) = (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) · (𝑀 Σg 𝑤)))
412411mpteq2dv 5186 . . . . . . . . . . . . . . . . 17 ( = (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) → (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) · (𝑀 Σg 𝑤))))
413412oveq2d 7365 . . . . . . . . . . . . . . . 16 ( = (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) · (𝑀 Σg 𝑤)))))
414413eqeq2d 2740 . . . . . . . . . . . . . . 15 ( = (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) → ((𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))) ↔ (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) · (𝑀 Σg 𝑤))))))
415 breq1 5095 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) → (𝑓 finSupp 0 ↔ (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) finSupp 0))
41678a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ℤ ∈ V)
417 fzfid 13880 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) → (0...(♯‘𝑡)) ∈ Fin)
418294ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑡))) → 𝑔:Word 𝐴⟶ℤ)
419 pfxcl 14584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ Word 𝐴 → (𝑡 prefix 𝑗) ∈ Word 𝐴)
420419ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑡))) → (𝑡 prefix 𝑗) ∈ Word 𝐴)
421418, 420ffvelcdmd 7019 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑡))) → (𝑔‘(𝑡 prefix 𝑗)) ∈ ℤ)
422184ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑡))) → 𝑖:Word 𝐴⟶ℤ)
423 swrdcl 14552 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ Word 𝐴 → (𝑡 substr ⟨𝑗, (♯‘𝑡)⟩) ∈ Word 𝐴)
424423ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑡))) → (𝑡 substr ⟨𝑗, (♯‘𝑡)⟩) ∈ Word 𝐴)
425422, 424ffvelcdmd 7019 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑡))) → (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)) ∈ ℤ)
426421, 425zmulcld 12586 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) ∧ 𝑗 ∈ (0...(♯‘𝑡))) → ((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) ∈ ℤ)
427417, 426fsumzcl 15642 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑡 ∈ Word 𝐴) → Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) ∈ ℤ)
428427fmpttd 7049 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))):Word 𝐴⟶ℤ)
429416, 109, 428elmapdd 8768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) ∈ (ℤ ↑m Word 𝐴))
430 0zd 12483 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → 0 ∈ ℤ)
431428ffund 6656 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → Fun (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))))
432 ccatfn 14479 . . . . . . . . . . . . . . . . . . . . 21 ++ Fn (V × V)
433 fnfun 6582 . . . . . . . . . . . . . . . . . . . . 21 ( ++ Fn (V × V) → Fun ++ )
434432, 433ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 Fun ++
435 imafi 9204 . . . . . . . . . . . . . . . . . . . 20 ((Fun ++ ∧ ((𝑔 supp 0) × (𝑖 supp 0)) ∈ Fin) → ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))) ∈ Fin)
436434, 244, 435sylancr 587 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))) ∈ Fin)
437 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑤 → (♯‘𝑡) = (♯‘𝑤))
438437oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑤 → (0...(♯‘𝑡)) = (0...(♯‘𝑤)))
439 fvoveq1 7372 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑤 → (𝑔‘(𝑡 prefix 𝑗)) = (𝑔‘(𝑤 prefix 𝑗)))
440 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑤𝑡 = 𝑤)
441437opeq2d 4831 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑤 → ⟨𝑗, (♯‘𝑡)⟩ = ⟨𝑗, (♯‘𝑤)⟩)
442440, 441oveq12d 7367 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑤 → (𝑡 substr ⟨𝑗, (♯‘𝑡)⟩) = (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))
443442fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑤 → (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)) = (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)))
444439, 443oveq12d 7367 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑤 → ((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) = ((𝑔‘(𝑤 prefix 𝑗)) · (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))))
445444adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 = 𝑤𝑗 ∈ (0...(♯‘𝑡))) → ((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) = ((𝑔‘(𝑤 prefix 𝑗)) · (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))))
446438, 445sumeq12dv 15613 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑤 → Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) = Σ𝑗 ∈ (0...(♯‘𝑤))((𝑔‘(𝑤 prefix 𝑗)) · (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))))
447 oveq1 7356 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑢 = (𝑤 prefix 𝑗) → (𝑢 ++ 𝑣) = ((𝑤 prefix 𝑗) ++ 𝑣))
448447eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢 = (𝑤 prefix 𝑗) → (𝑤 = (𝑢 ++ 𝑣) ↔ 𝑤 = ((𝑤 prefix 𝑗) ++ 𝑣)))
449 oveq2 7357 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑣 = (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩) → ((𝑤 prefix 𝑗) ++ 𝑣) = ((𝑤 prefix 𝑗) ++ (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)))
450449eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑣 = (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩) → (𝑤 = ((𝑤 prefix 𝑗) ++ 𝑣) ↔ 𝑤 = ((𝑤 prefix 𝑗) ++ (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))))
451246ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → 𝑔 Fn Word 𝐴)
452109ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → Word 𝐴 ∈ V)
453 0zd 12483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → 0 ∈ ℤ)
454 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) → 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0)))))
455454eldifad 3915 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) → 𝑤 ∈ Word 𝐴)
456455adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → 𝑤 ∈ Word 𝐴)
457 pfxcl 14584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 ∈ Word 𝐴 → (𝑤 prefix 𝑗) ∈ Word 𝐴)
458456, 457syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → (𝑤 prefix 𝑗) ∈ Word 𝐴)
459458ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → (𝑤 prefix 𝑗) ∈ Word 𝐴)
460 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → (𝑔‘(𝑤 prefix 𝑗)) ≠ 0)
461451, 452, 453, 459, 460elsuppfnd 32625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → (𝑤 prefix 𝑗) ∈ (𝑔 supp 0))
462275ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → 𝑖 Fn Word 𝐴)
463 swrdcl 14552 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 ∈ Word 𝐴 → (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩) ∈ Word 𝐴)
464456, 463syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩) ∈ Word 𝐴)
465464ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩) ∈ Word 𝐴)
466 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0)
467462, 452, 453, 465, 466elsuppfnd 32625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩) ∈ (𝑖 supp 0))
468456ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → 𝑤 ∈ Word 𝐴)
469 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → 𝑗 ∈ (0...(♯‘𝑤)))
470 pfxcctswrd 14616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑤 ∈ Word 𝐴𝑗 ∈ (0...(♯‘𝑤))) → ((𝑤 prefix 𝑗) ++ (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 𝑤)
471468, 469, 470syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → ((𝑤 prefix 𝑗) ++ (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 𝑤)
472471eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → 𝑤 = ((𝑤 prefix 𝑗) ++ (𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)))
473448, 450, 461, 467, 4722rspcedvdw 3591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → ∃𝑢 ∈ (𝑔 supp 0)∃𝑣 ∈ (𝑖 supp 0)𝑤 = (𝑢 ++ 𝑣))
474 fnov 7480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ( ++ Fn (V × V) ↔ ++ = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢 ++ 𝑣)))
475432, 474mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ++ = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢 ++ 𝑣))
476200a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⊤ → 𝑤 ∈ V)
477 ssv 3960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑔 supp 0) ⊆ V
478477a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⊤ → (𝑔 supp 0) ⊆ V)
479 ssv 3960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖 supp 0) ⊆ V
480479a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⊤ → (𝑖 supp 0) ⊆ V)
481475, 476, 478, 480elimampo 7486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⊤ → (𝑤 ∈ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))) ↔ ∃𝑢 ∈ (𝑔 supp 0)∃𝑣 ∈ (𝑖 supp 0)𝑤 = (𝑢 ++ 𝑣)))
482481mptru 1547 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))) ↔ ∃𝑢 ∈ (𝑔 supp 0)∃𝑣 ∈ (𝑖 supp 0)𝑤 = (𝑢 ++ 𝑣))
483473, 482sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → 𝑤 ∈ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))
484483anasss 466 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ ((𝑔‘(𝑤 prefix 𝑗)) ≠ 0 ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0)) → 𝑤 ∈ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))
485454ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0)))))
486485eldifbd 3916 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ (𝑔‘(𝑤 prefix 𝑗)) ≠ 0) ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) → ¬ 𝑤 ∈ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))
487486anasss 466 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) ∧ ((𝑔‘(𝑤 prefix 𝑗)) ≠ 0 ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0)) → ¬ 𝑤 ∈ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))
488484, 487pm2.65da 816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → ¬ ((𝑔‘(𝑤 prefix 𝑗)) ≠ 0 ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0))
489 df-ne 2926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑔‘(𝑤 prefix 𝑗)) ≠ 0 ↔ ¬ (𝑔‘(𝑤 prefix 𝑗)) = 0)
490 df-ne 2926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0 ↔ ¬ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 0)
491489, 490anbi12i 628 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑔‘(𝑤 prefix 𝑗)) ≠ 0 ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) ↔ (¬ (𝑔‘(𝑤 prefix 𝑗)) = 0 ∧ ¬ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 0))
492491notbii 320 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (¬ ((𝑔‘(𝑤 prefix 𝑗)) ≠ 0 ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0) ↔ ¬ (¬ (𝑔‘(𝑤 prefix 𝑗)) = 0 ∧ ¬ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 0))
493 pm4.57 992 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (¬ (¬ (𝑔‘(𝑤 prefix 𝑗)) = 0 ∧ ¬ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 0) ↔ ((𝑔‘(𝑤 prefix 𝑗)) = 0 ∨ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 0))
494492, 493bitr2i 276 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑔‘(𝑤 prefix 𝑗)) = 0 ∨ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 0) ↔ ¬ ((𝑔‘(𝑤 prefix 𝑗)) ≠ 0 ∧ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ≠ 0))
495488, 494sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → ((𝑔‘(𝑤 prefix 𝑗)) = 0 ∨ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 0))
496294ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → 𝑔:Word 𝐴⟶ℤ)
497496, 458ffvelcdmd 7019 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → (𝑔‘(𝑤 prefix 𝑗)) ∈ ℤ)
498497zcnd 12581 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → (𝑔‘(𝑤 prefix 𝑗)) ∈ ℂ)
499184ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → 𝑖:Word 𝐴⟶ℤ)
500499, 464ffvelcdmd 7019 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ∈ ℤ)
501500zcnd 12581 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) ∈ ℂ)
502498, 501mul0ord 11768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → (((𝑔‘(𝑤 prefix 𝑗)) · (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))) = 0 ↔ ((𝑔‘(𝑤 prefix 𝑗)) = 0 ∨ (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩)) = 0)))
503495, 502mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑗 ∈ (0...(♯‘𝑤))) → ((𝑔‘(𝑤 prefix 𝑗)) · (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))) = 0)
504503sumeq2dv 15609 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) → Σ𝑗 ∈ (0...(♯‘𝑤))((𝑔‘(𝑤 prefix 𝑗)) · (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))) = Σ𝑗 ∈ (0...(♯‘𝑤))0)
505 fzssuz 13468 . . . . . . . . . . . . . . . . . . . . . . . 24 (0...(♯‘𝑤)) ⊆ (ℤ‘0)
506 sumz 15629 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((0...(♯‘𝑤)) ⊆ (ℤ‘0) ∨ (0...(♯‘𝑤)) ∈ Fin) → Σ𝑗 ∈ (0...(♯‘𝑤))0 = 0)
507506orcs 875 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0...(♯‘𝑤)) ⊆ (ℤ‘0) → Σ𝑗 ∈ (0...(♯‘𝑤))0 = 0)
508505, 507mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) → Σ𝑗 ∈ (0...(♯‘𝑤))0 = 0)
509504, 508eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) → Σ𝑗 ∈ (0...(♯‘𝑤))((𝑔‘(𝑤 prefix 𝑗)) · (𝑖‘(𝑤 substr ⟨𝑗, (♯‘𝑤)⟩))) = 0)
510446, 509sylan9eqr 2786 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) ∧ 𝑡 = 𝑤) → Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))) = 0)
511 0zd 12483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) → 0 ∈ ℤ)
512370, 510, 455, 511fvmptd2 6938 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑔𝐹) ∧ 𝑖𝐹) ∧ 𝑤 ∈ (Word 𝐴 ∖ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))) → ((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) = 0)
513428, 512suppss 8127 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) supp 0) ⊆ ( ++ “ ((𝑔 supp 0) × (𝑖 supp 0))))
514436, 513ssfid 9158 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) supp 0) ∈ Fin)
515429, 430, 431, 514isfsuppd 9256 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) finSupp 0)
516415, 429, 515elrabd 3650 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
517516, 6eleqtrrdi 2839 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩)))) ∈ 𝐹)
518 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → ((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) = ((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤))
519518, 145oveq12d 7367 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑤 → (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)) = (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) · (𝑀 Σg 𝑤)))
520519cbvmptv 5196 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣))) = (𝑤 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) · (𝑀 Σg 𝑤)))
521520oveq2i 7360 . . . . . . . . . . . . . . . 16 (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) · (𝑀 Σg 𝑤))))
522521a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑤) · (𝑀 Σg 𝑤)))))
523414, 517, 522rspcedvdw 3580 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ∃𝐹 (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑤) · (𝑀 Σg 𝑤)))))
524 ovexd 7384 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) ∈ V)
525409, 523, 524elrnmptd 5905 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
526525, 8eleqtrrdi 2839 . . . . . . . . . . . 12 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → (𝑅 Σg (𝑣 ∈ Word 𝐴 ↦ (((𝑡 ∈ Word 𝐴 ↦ Σ𝑗 ∈ (0...(♯‘𝑡))((𝑔‘(𝑡 prefix 𝑗)) · (𝑖‘(𝑡 substr ⟨𝑗, (♯‘𝑡)⟩))))‘𝑣) · (𝑀 Σg 𝑣)))) ∈ 𝑆)
527404, 526eqeltrd 2828 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
528527adantllr 719 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
529528adantllr 719 . . . . . . . . 9 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
530529adantlr 715 . . . . . . . 8 ((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
531530adantr 480 . . . . . . 7 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))(.r𝑅)(𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) ∈ 𝑆)
532107, 531eqeltrd 2828 . . . . . 6 (((((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ∧ 𝑖𝐹) ∧ 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
5338eleq2i 2820 . . . . . . . . 9 (𝑦𝑆𝑦 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
534169oveq2d 7365 . . . . . . . . . . . 12 (𝑔 = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
535534cbvmptv 5196 . . . . . . . . . . 11 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑖𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
536535elrnmpt 5900 . . . . . . . . . 10 (𝑦 ∈ V → (𝑦 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤))))))
537536elv 3441 . . . . . . . . 9 (𝑦 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
538533, 537sylbb 219 . . . . . . . 8 (𝑦𝑆 → ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
539538adantl 481 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
540539ad2antrr 726 . . . . . 6 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → ∃𝑖𝐹 𝑦 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑖𝑤) · (𝑀 Σg 𝑤)))))
541532, 540r19.29a 3137 . . . . 5 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑔𝐹) ∧ 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
5428eleq2i 2820 . . . . . . 7 (𝑥𝑆𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
54371elrnmpt 5900 . . . . . . . 8 (𝑥 ∈ V → (𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
544543elv 3441 . . . . . . 7 (𝑥 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) ↔ ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
545542, 544sylbb 219 . . . . . 6 (𝑥𝑆 → ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
546545ad2antlr 727 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → ∃𝑔𝐹 𝑥 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
547541, 546r19.29a 3137 . . . 4 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
548547anasss 466 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
549548ralrimivva 3172 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)
5502, 24, 108issubrg2 20477 . . 3 (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)))
551550biimpar 477 . 2 ((𝑅 ∈ Ring ∧ (𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)) → 𝑆 ∈ (SubRing‘𝑅))
5521, 9, 104, 549, 551syl13anc 1374 1 (𝜑𝑆 ∈ (SubRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  cun 3901  wss 3903  c0 4284  ifcif 4476  {csn 4577  cop 4583   class class class wbr 5092  cmpt 5173   × cxp 5617  ran crn 5620  cima 5622  Fun wfun 6476   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923   supp csupp 8093  m cmap 8753  Fincfn 8872   finSupp cfsupp 9251  cc 11007  0cc0 11009  1c1 11010   · cmul 11014  cz 12471  cuz 12735  ...cfz 13410  chash 14237  Word cword 14420   ++ cconcat 14477   substr csubstr 14547   prefix cpfx 14577  Σcsu 15593  Basecbs 17120  .rcmulr 17162  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608  Grpcgrp 18812  .gcmg 18946  SubGrpcsubg 18999  CMndccmn 19659  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118  SubRingcsubrg 20454  RingSpancrgspn 20495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-concat 14478  df-substr 14548  df-pfx 14578  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-subrng 20431  df-subrg 20455  df-cnfld 21262  df-zring 21354
This theorem is referenced by:  elrgspnlem4  33186
  Copyright terms: Public domain W3C validator